This note addresses the issue as to which ceers can be realized by word problems of computably enumerable (or, simply, c.e.) structures (such as c.e. semigroups, groups, and rings), where being realized means to fall in the same reducibility degree (under the notion of reducibility for equivalence relations usually called “computable reducibility”), or in the same isomorphism type (with the isomorphism induced by a computable function), or in the same strong isomorphism type (with the isomorphism induced by a computable permutation of the natural numbers). We observe, e.g., that every ceer is isomorphic to the word problem of some c.e. semigroup, but (answering a question of Gao and Gerdes) not every ceer is in the same reducibility degree of the word problem of some finitely presented semigroup, nor is it in the same reducibility degree of some non‐periodic semigroup. We also show that the ceer provided by provable equivalence of Peano Arithmetic is in the same strong isomorphism type as the word problem of some non‐commutative and non‐Boolean c.e. ring.
We contribute to a recent research program which aims at revisiting the study of the complexity of word problems, a major area of research in combinatorial algebra, through the lens of the theory of computably enumerable equivalence relations (ceers), which has considerably grown in recent times. To pursue our analysis, we rely on the most popular way of assessing the complexity of ceers, that is via computable reducibility on equivalence relations, and its corresponding degree structure (the [Formula: see text]-degrees). On the negative side, building on previous work of Kasymov and Khoussainov, we individuate a collection of [Formula: see text]-degrees of ceers which cannot be realized by the word problem of any finitely generated algebra of finite type. On the positive side, we show that word problems of finitely generated semigroups realize a collection of [Formula: see text]-degrees which embeds rich structures and is large in several reasonable ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.