Gravitational-wave astronomy has the potential to substantially advance our knowledge of the cosmos, from the most powerful astrophysical engines to the initial stages of our universe. Gravitational waves also carry information about the nature of black holes. Here we investigate the potential of gravitational-wave detectors to test a proposal by Bekenstein and Mukhanov that the area of black hole horizons is quantized in units of the Planck area. Our results indicate that this quantization could have a potentially observable effect on the classical gravitational wave signals received by detectors. In particular, we find distorted gravitational-wave "echoes" in the post-merger waveform describing the inspiral and merger of two black holes. These echoes have a specific frequency content that is characteristic of black hole horizon area quantization.Here N is an integer and α an O(1) dimensionless coefficient.
We argue that near-future detections of gravitational waves from merging black hole binaries can test a long-standing proposal, originally due Bekenstein and Mukhanov, that the areas of black hole horizons are quantized in integer multiples of the Planck area times an O(1) dimensionless constant α. This condition quantizes the frequency of radiation that can be absorbed or emitted by a black hole. If this quantization applies to the "ring down" gravitational radiation emitted immediately after a black hole merger, a single measurement consistent with the predictions of classical general relativity would rule out most or all (depending on the spin of the hole) of the extant proposals in the literature for the value of α. A measurement of two such events for final black holes with substantially different spins would rule out the proposal for any α. If the modification of general relativity is confined to the near-horizon region within the hole's light ring and does not affect the initial ring down signal, a detection of "echoes" with characteristic properties could still confirm the proposal.
We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the Brownian Loop Soup. These correlation functions depend on multiple continuous parameters: the insertion points of the operators, the intensity of the soup, and the charges of the operators. In the case of the four-point function there is non-trivial dependence on five continuous parameters: the cross-ratio, the intensity, and three real charges. The four-point function is crossing symmetric. We analyze its conformal block expansion and discover a previously unknown set of new conformal primary operators.
We investigate Hawking evaporation in a recently suggested picture in which black holes are Bose condensates of gravitons at a quantum critical point. There, evaporation of a black hole is due to two intertwined effects. Coherent excitation of a tachyonic breathing mode is responsible for the collapse of the condensate, while incoherent scattering of gravitons leads to Hawking radiation. To explore this, we consider a toy model of a single bosonic degree of freedom with derivative self-interactions. We consider the real-time evolution of a condensate and derive evaporation laws for two possible decay mechanisms in the Schwinger-Keldysh formalism. We show that semiclassical results can be reproduced if the decay is due to an effective two-body process, while the existence of a three-body channel would imply very short lifetimes for the condensate. In either case, we uncover the existence of scaling solutions in which the condensate is at a critical point throughout the collapse. In the case of a two-body decay we moreover discover solutions that exhibit the kind of instability that was recently conjectured to be responsible for fast scrambling. arXiv:1504.04384v1 [hep-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.