Abstract. For each submanifold of a stratified group, we find a number and a measure only depending on its tangent bundle, the grading and the fixed Riemannian metric. In two step stratified groups, we show that such number and measure coincide with the Hausdorff dimension and with the spherical Hausdorff measure of the submanifold with respect to the Carnot-Carathéodory distance, respectively. Our main technical tool is an intrinsic blow-up at points of maximum degree. We also show that the intrinsic tangent cone to the submanifold at these points is always a subgroup. Finally, by direct computations in the Engel group, we show how our results can be extended to higher step stratified groups, provided the submanifold is sufficiently regular.
Abstract.We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q−1 restricted to ∂E, when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q−1 (∂E) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli, Garofalo and Nhieu. The crucial ingredient of this result is the negligibility of "characteristic points" of the boundary. We introduce the notion of "horizontal point", which extends the notion of characteristic point to arbitrary submanifolds, and we prove that the set of horizontal points of a k-codimensional submanifold is S Q−k -negligible. We propose an intrinsic notion of rectifiability for subsets of higher codimension, called (G, R k )-rectifiability, and we prove that Euclidean k-codimensional rectifiable sets are (G, R k )-rectifiable.
We study graded group-valued continuously differentiable mappings defined on stratified groups, where differentiability is understood with respect to the group structure. We characterize these mappings by a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient. This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper factorization of the domain into a suitable inner semidirect product. When this splitting property of the differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets. For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds. In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess a unique metric tangent cone equipped with a natural group structure.2010 Mathematics subject classification: primary 22E30; secondary 26B10, 26B12.
In the geometries of stratified groups, we show that H-convex functions locally bounded from above are locally Lipschitz continuous and that the class of v-convex functions exactly corresponds to the class of upper semicontinuous H-convex functions. As a consequence, v-convex functions are locally Lipschitz continuous in every stratified group. In the class of step 2 groups we characterize locally Lipschitz H-convex functions as measures whose distributional horizontal Hessian is positive semidefinite. In Euclidean space the same results were obtained by Dudley and Reshetnyak. We prove that a continuous H-convex function is a.e. twice differentiable whenever its second order horizontal derivatives are Radon measures.
Abstract. We review some classical differentiation theorems for measures, showing how they can be turned into an integral representation of a Borel measure with respect to a fixed Carathéodory measure. We focus our attention in the case this measure is the spherical Hausdorff measure, giving a metric measure area formula. Our point consists in using certain covering derivatives as "generalized densities". Some consequences for the sub-Riemannian Heisenberg group are also pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.