Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Background:Organic anion-transporting polypeptides (OATPs) are influx transporters that mediate intracellular uptake of selective endogenous and xenobiotic compounds. Identification of new molecular targets and discovery of novel targeted therapies is top priority for pancreatic cancer, which lacks any effective therapy.Materials and methods:We studied expression of OATP 1A2, 1B1, and 1B3 in pancreatic cancer tissue and in cell lines. Formalin-fixed paraffin-embedded biopsy material of 12 human pancreatic cancers was immunohistochemically assessed for protein expression of the three studied influx transporters. Immunohistochemistry was evaluated by experienced pathologists and quantified by use of an automated image analysis system. BxPC-3 and MIA PaCa-2 pancreatic cancer cell lines were used to quantify transcripts of OATP 1B1 and 1B3.Results:OATP 1A2, 1B1, and 1B3 proteins were found ubiquitously expressed in all studied cases. Quantification performed by HistoQuest system revealed that mean intensity was 53 for 1A2, 45 for 1B1, and 167 for OATP 1B1/1B3 on a range scale 0–250 units. At mRNA level, 1B1 and 1B3 were overexpressed in both studied cancer cell lines but not in normal pancreatic tissue.Conclusion:OATPs 1A2, 1B1, and 1B3 are highly expressed in pancreatic adenocarcinoma. We suggest that expression of these transporters in pancreatic cancer justify research efforts towards discovery of novel therapeutics targeting OATPs.
BIK (bcl2-interacting killer) is the founding member of the BH3-only bcl-2 family of pro-apoptotic proteins, which is suppressed in various cancers. In multiple myeloma (MM), BIK has been shown to be epigenetically silenced in vitro, but there is a lack of clinical data. We investigated the CpG methylation status of the BIK promoter in a well-characterized clinical series of patients with MM and investigated its clinical relevance. Forty patients with MM (21 male, 19 female; mean age 66) were studied. According to the International Staging System (ISS) they were classified as 16 patients with stage I, 12 patients with stage II and 12 patients with stage III disease. Methylation in the BIK CpG island was assessed by methylation-specific polymerase chain reaction (MSP) assay. Logistic regression analysis was used to investigate associations between gene methylation and age, ISS stage, performance status, extramedullary disease, bone disease, anemia (hemoglobin ≤10 mg/dL), serum albumin, β(2)-microglobulin level and relapsed/refractory disease. Methylation in the BIK CpG island was detected in 16 patients (40%), with a trend favoring male gender (odds ratio [OR] = 3.08, p = 0.09) and development of bone disease and extramedullary disease (OR = 1.6, p = 0.35 and OR = 3, p = 0.14, respectively). Patients with MM with methylated BIK CpG island had a statistically significant risk for disease evolution to relapsed/refractory disease (OR = 5.4, p = 0.03). This study provides clinical evidence that methylation-induced transcriptional silencing of the BIK pro-apoptotic gene may occur in MM, which might serve as a predictor of the development of relapsed/refractory MM. These findings warrant validation in larger cohorts of patients and suggest therapeutic utility for agents that enhance BIK expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.