Optical control of the primary step of photoisomerization of the retinal molecule in bacteriorhodopsin from the all-trans to the 13-cis state was demonstrated under weak field conditions (where only 1 of 300 retinal molecules absorbs a photon during the excitation cycle) that are relevant to understanding biological processes. By modulating the phases and amplitudes of the spectral components in the photoexcitation pulse, we showed that the absolute quantity of 13-cis retinal formed upon excitation can be enhanced or suppressed by +/-20% of the yield observed using a short transform-limited pulse having the same actinic energy. The shaped pulses were shown to be phase-sensitive at intensities too low to access different higher electronic states, and so these pulses apparently steer the isomerization through constructive and destructive interference effects, a mechanism supported by observed signatures of vibrational coherence. These results show that the wave properties of matter can be observed and even manipulated in a system as large and complex as a protein.
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
The role of vibrational coherence-concerted vibrational motion on the excited-state potential energy surface-in the isomerization of retinal in the protein rhodopsin remains elusive, despite considerable experimental and theoretical efforts. We revisited this problem with resonant ultrafast heterodyne-detected transient-grating spectroscopy. The enhanced sensitivity that this technique provides allows us to probe directly the primary photochemical reaction of vision with sufficient temporal and spectral resolution to resolve all the relevant nuclear dynamics of the retinal chromophore during isomerization. We observed coherent photoproduct formation on a sub-50 fs timescale, and recovered a host of vibrational modes of the retinal chromophore that modulate the transient-grating signal during the isomerization reaction. Through Fourier filtering and subsequent time-domain analysis of the transient vibrational dynamics, the excited-state nuclear motions that drive the isomerization reaction were identified, and comprise stretching, torsional and out-of-plane wagging motions about the local C11=C12 isomerization coordinate.
During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the FennaMatthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.T he principle laws of physics undoubtedly also govern the principle mechanisms of biology. The animate world consists of macroscopic and dynamically slow structures with a huge number of degrees of freedom, such that the laws of statistical mechanics apply. Conversely, the fundamental theory of the microscopic building blocks is quantum mechanics. The physics and chemistry of large molecular complexes may be considered as a bridge between the molecular world and the formation of living matter. A fascinating question since the early days of quantum theory is on the borderline between the atomistic quantum world and the classical world of biology. Clearly, the conditions under which matter displays quantum features or biological functionality are contrarious. Quantum coherent features only become apparent when systems with a few degrees of freedom with a preserved quantum mechanical phase relation of a wave function are well shielded from environmental fluctuations that otherwise lead to rapid dephasing. This dephasing mechanism is very efficient at ambient temperatures, at which biological systems operate. Also, the function of biological macromolecular systems relies on their embedding in a "wet" and highly polar solvent environment, which is again hostile to any quantum coherence. Therefore, the common view ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.