Currently, non-destructive testing is an interdisciplinary field of science and technology that serves to ensure the safe functioning of complex technical systems in the face of multifactorial risks. In this regard, there is a need to consider new information technologies based on intellectual perception, recognition technology, and general network integration. The purpose of this work was to develop an ultrasonic flaw detector, which uses a smartphone to process the test results, as well as transfer them directly to an powerful information processing center, or to a cloud storage to share operational information with specialists from anywhere in the world.The proposed flaw detector consists of a sensor unit and a smartphone. The exchange of information between the sensor and the smartphone takes place using wireless networks that use "bluetooth" technology. To ensure the operation of the smartphone in the ultrasonic flaw detector mode, the smartphone has software installed that runs in the Android operating system and implements the proposed algorithm of the device, and can serve as a repeater for processing data over a considerable distance (up to hundreds and thousands of kilometers) if it necessary.The experimental data comparative analysis of the developed device with the Einstein-II flaw detector from Modsonic (India) and the TS-2028H+ flaw detector from Tru-Test (New Zealand) showed that the proposed device is not inferior to them in terms of such characteristics as the range of measured thicknesses, the relative error in determining the depth defect and the object thickness. When measuring small thicknesses from 5 to 10 mm, the proposed device even surpasses them, providing a relative measurement error of the order of 1 %, while analogues give this error within 2–3 %.
It is known that during operation, the aircraft construction materials are exposed to significant mechanical loads and changes in temperature for a very short period of time. All this leads to various defects and damages in the aircraft assemblies and units that need to be inspected for the safe operation of the aircraft, their assemblies, and units. In some cases, the implementation of inspection or diagnostic is accompanied by the emergence of technical difficulties caused by the large size of the aircraft assemblies or units and limited access to their local places. Under such conditions, ensuring the possibility of diagnosis in hard-to-reach places of the object becomes especially important. The problem can be solved by applying wireless technologies. It allows spatial separation of the probes and the signal processing units, which simplifies the scanning of the surfaces of the large assemblies and units in hard-to-reach places. In this article, the description of the developed wireless system of eddy current inspection for aircraft structural materials is given. Experimental results of object scanning are given in the form of a distribution of the values of probe signal informative parameters (amplitude, frequency and decrement) along the object coordinates.
It is known that in the process of operation the materials of aircraft construction are exposed to significant mechanical loads and temperature changes (fluctuations) for a very short period of time. All this leads to various defects and damages to aircraft assemblies and units which need to be inspected for the safe operation of the aircraft, their assemblies, and units. In some cases, the implementation of inspection or diagnostic is accompanied by technical difficulties caused by the large size of aircraft assemblies or units and limited access to their local places. In such conditions, it becomes especially important to provide the possibility of diagnostics in hard-toreach places of the object.The problem can be solved by applying wireless technologies to transmit signals from the probes to the data processing units. This allows separating the probes unit and the analysis and decision-making unit in space, and simplifies the practical implementation of robotics scanning the surfaces of large assemblies and elements in hard-to-reach places.The article describes the developed intelligent wireless system for eddy current inspection of aircraft structural materials. A technique for processing and visualization information is proposed that can be used in inspection systems and intelligent decision-making when monitoring the state of large objects. The experimental results of scanning an object are presented as a distribution of the informative parameters values of the probing signal (amplitude, frequency and decrement) over the coordinates of the object.
The formation and analysis of eddy current probe signals obtained in pulsed excitation mode is considered. The proposed method of implementing pulsed eddy current testing with the formation of attenuating harmonic oscillations is more resistant to the effects of noise and interference that accompany the process of inspected object parameters evaluation. The equivalent scheme of the system “test object–eddy current probe” is developed and analyzed. The obtained mathematical model of the eddy current probe signals allowed proposing the natural frequency and the attenuation as informative signals parameters, which are determined from signals phase and amplitude characteristics. Developed algorithm and the proposed methodology was implemented for evaluation of eddy current signals parameters and related characteristics of testing objects. This method was experimentally verified on a series of different test specimens. The obtained results confirm the possibility to apply the proposed informative signals to solve some problems concerned with automated eddy current testing. The formation and analysis of eddy current probe signals obtained in pulsed excitation mode are considered. The proposed method of implementing pulsed eddy current testing with the formation of attenuating harmonic oscillations is more resistant to the effects of noise and interference that accompany the process of automated eddy current testing. The equivalent scheme of the system “test object–eddy current probe” is developed and analyzed. The obtained mathematical model of the eddy current probe signals allows proposing the natural frequency and the attenuation as informative signals parameters, which are determined from signal phase and amplitude characteristics. Methods of increasing the accuracy of determining the eddy current probe signals attenuation and frequency using trends of signals phase and amplitude characteristics are considered. The proposed signal processing method was verified by modeling the process of determining the eddy current probe signals attenuation and the frequency from the signal with Gaussian noise. Algorithmic and software were developed based on the simulation results and the proposed improved methodology was implemented for determining signals parameters and related parameters and characteristics of testing objects.
information operation. The goal is, usually, to change the opinion of the target audience about the information operation object. Based on data obtained from experts and open sources, the knowledge base of the subject domain is built in the form of a weighted graph. It represents a hierarchy of factors that influence the main goal. Beside numeric value, the impact of each sub-goal in the graph is also characterized by certain delay and duration. With these parameters taken into consideration, the degree of main goal achievement is calculated, and changes of target parameters of information operation object are monitored. Usage of the proposed methodology is demonstrated on the example of detection and analysis actions intended to discredit the National academy of sciences of Ukraine. For this purpose, automated decision support and content monitoring tools are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.