Quality, specifically protein content and gluten strength are among the main objectives of a durum wheat breeding program. The aim of this work was to validate quantitative trait loci (QTLs) associated with grain protein content (GPC) and gluten strength measured by SDS sedimentation volume (SV) and to find additional QTLs expressed in Argentinean environments. Also, epistatic QTL and QTL x environmental interactions were analyzed. A mapping population of 93 RILs derived from the cross UC1113 x Kofa showing extreme values in gluten quality was used. Phenotypic data were collected along six environments (three locations, two years). Main effect QTLs associated with GPC were found in equivalent positions in two environments on chromosomes 3BS (R(2)=21.0-21.6%) and 7BL (R(2)=12.1-13%), and in one environment on chromosomes 1BS, 2AL, 2BS, 3BL, 4AL, 5AS, 5BL and 7AS. The most important and stable QTL affecting SV was located on chromosome 1BL (Glu-B1) consistently detected over the six environments (R(2)=20.9- 54.2%). Additional QTLs were found in three environments on chromosomes 6AL (R(2)=6.4-12.5%), and in two environments on chromosomes 6BL (R(2)=11.5-12.1%), 7AS (R(2)=8.2-10.2%) and 4BS (R(2)=11-16.4%). In addition, pleiotropic effects were found affecting grain yield, test weight, thousand-kernel-weight and days to heading in some of these QTLs. Epistatic QTLs and QTL x environment interactions were found for both quality traits, mostly for GPC. The flanking markers of the QTLs detected in this work could be efficient tools to select superior genotypes for the mentioned traits.
The aim of this work was to analyze the genetic diversity and linkage disequilibrium in a collection of 168 durum wheat accessions (Triticum turgidum L. var. durum) of different origins. Our collection was mainly composed of released and unreleased Argentinian germplasm, with additional genotypes from Italy, Chile, France, CIMMYT, Cyprus, USA and WANA region. To this end, the entire collection was characterized with 85 Single Nucleotide Polymorphism (SNP) markers obtained by Kompetitive Allele Specific PCR (KASP), giving a heterozygosity (He) mean value of 0.183 and a coefficient of genetic differentiation (Gst) value of 0.139. A subset of 119 accessions was characterized with six Amplified Fragment Length Polymorphism (AFLP) primer combinations. A total of 181 polymorphic markers (125 AFLP and 56 SNP) amplified across this subset revealed He measures of 0.352 and 0.182, respectively. Of these, 134 were selected to estimate the genome-wide linkage disequilibrium obtaining low significant values (r2 = 0.11) in the subset, indicating its suitability for future genome-wide association studies (GWAS). The structure analysis conducted in the entire collection with SNP detected two subpopulations. However, the structure analysis conducted with AFLP markers in the subset of 119 accessions proved to have greater degree of resolution and detect six subpopulations. The information provided by both marker types was complementary and showed a strong association between old Argentinian and Italian germplasm and a contribution of CIMMYT germplasm to modern Argentinian, Chilean and Cypriot accessions. The influence of Mediterranean germplasm, mainly from Italy, on part of the modern Argentinian cultivars or breeding lines was also clearly evidenced. Although our analysis yields conclusive results and useful information for association mapping studies, further analyses are needed to refine the number of subpopulations present in the germplasm collection analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.