Multiple myeloma (MM) belongs to hematological cancers and its incidence is increasing worldwide. Despite recent advances in its therapy, MM still causes many deaths every year. In fact, current therapies sometimes fail and are associated with severe adverse effects, including neurotoxicity. As a part of our ongoing efforts to discover new potential therapies against MM, we prepared Hibiscus sabdariffa extracts obtained by a microwave-assisted solvent extraction and investigate their activity by in vitro assays on the RPMI-8226 cell line. The bioguided fractionation of the crude ethanolic extract allowed the identification of HsFC as the most effective extract. We assessed cell viability (MTT and Tripan blue test), cell migration (Boyden chamber assay), and neurotoxicity (DRG neurotoxicity assay). The promising results prompted us to further fractionate HsFC and we obtained two molecules effective against RPMI-8226 cells without neurotoxic effects at their active concentrations. Moreover, both compounds are able to significantly reduce cell migration.
Injuries to the nervous system affect more than one billion people worldwide, and dramatically impact on the patient’s quality of life. The present work aimed to design and develop a gellan gum (GG)-based composite system for the local delivery of the neuroprotective sigma-1 receptor agonist, 1-[3-(1,1′-biphen)-4-yl] butylpiperidine (RC-33), as a potential tool for the treatment of tissue nervous injuries. The system, consisting of cross-linked electrospun nanofibers embedded in a RC-33-loaded freeze-dried matrix, was designed to bridge the lesion gap, control drug delivery and enhance axonal regrowth. The gradual matrix degradation should ensure the progressive interaction between the inner fibrous mat and the surrounding cellular environment. Nanofibers, prepared by electrospinning polymeric solutions containing GG, two different grades of poly (ethylene oxide) and poloxamer, were cross-linked with calcium ions. GG-based matrices, loaded with different amounts of RC-33, were prepared by freeze-drying. Dialysis studies and solid-state characterization pointed out the formation of an interaction product between GG and RC-33. RC-33-loaded freeze-dried matrices were characterized by the capability to absorb a high buffer content, forming a gel with marked viscoelastic properties, and by RC-33 controlled release properties. The presence of cross-linked nanofibers increased matrix mechanical resistance.
The aim of the present work was to load a Hibiscus sabdariffa (HS) hydroalcoholic extract into in situ gelling formulations for the treatment of oral mucositis and esophagitis. Such formulations, selected as the most promising options in a previous work of ours, were composed by κ-carrageenan (κ-CG), a sulfated marine polymer able to gelify in presence of saliva ions, hydroxypropyl cellulose (HPC), used as mucoadhesive agent, and CaCl2, salt able to enhance the interaction κ-CG/saliva ions. HS extract, which is rich in phytochemicals such as polyphenols, polysaccharides and organic acids, was selected due to its antioxidant and anti-inflammatory properties. For HS extraction, three different methodologies (maceration, Ultrasound Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE)) were compared in terms of extraction yield and extract antioxidant activity, revealing that MAE was the best procedure. Rheological and mucoadhesive properties of HS-loaded formulations were investigated. Such formulations were characterized by a low viscosity at 25 °C, guaranteeing an easy administration, a proper in situ gelation behavior and marked elastic and mucoadhesive properties at 37 °C, functional to a protective action towards the damaged mucosa. Finally, the biocompatibility and the proliferative effect of HS-loaded formulations, as well as their antioxidant and anti-inflammatory properties, were proved in vitro on human dermal fibroblasts.
Antimicrobial resistance (AMR) is a growing threat with severe health and economic consequences. The available antibiotics are losing efficacy, and the hunt for alternative strategies is a priority. Quorum sensing (QS) controls biofilm and virulence factors production. Thus, the quenching of QS to prevent pathogenicity and to increase bacterial susceptibility to antibiotics is an appealing therapeutic strategy. The phosphorylation of autoinducer-2 (a mediator in QS) by LsrK is a crucial step in triggering the QS cascade. Thus, LsrK represents a valuable target in fighting AMR. Few LsrK inhibitors have been reported so far, allowing ample room for further exploration. This perspective aims to provide a comprehensive analysis of the current knowledge about the structural and biological properties of LsrK and the state-of-the-art technology for LsrK inhibitor design. We elaborate on the challenges in developing novel LsrK inhibitors and point out promising avenues for further research.
Introduction Marrubium vulgare is a herbal remedy presents in several European Pharmacopoeias and commonly marketed as white horehound. The chemotaxonomic marker of Marrubium genus is marrubiin and its content may change in response to biotic and abiotic stress. Objective Development of a microwave‐assisted solvent extraction (MASE) methodology suitable for exhaustively extracting marrubiin from M. vulgare leaves, easily applicable to large sets of samples. Evaluation of the influence of copper(II) on marrubiin production. Material and methods M. vulgare leaves were dried, extracted exploiting MASE and analysed via high‐performance liquid chromatography ultraviolet photodiode array detection (HPLC‐UV/PAD) system. A design of experiments approach was adopted to select the best extraction conditions. Extraction parameters (solvent composition, extraction time and temperature), were studied applying two full factorial experimental designs in a sequential approach. To analyse samples, a rapid HPLC‐UV/PAD method was set up. Results The best results in terms of marrubiin extraction yield were obtained extracting samples at 120°C with 100% ethanol, for 15 min (3 × 5 min microwave cycles). The developed methodology was successfully applied to matrices grown in Greenhouse conditions and under stress induced by copper(II), selected as model agent for abiotic stress. Progressively decreasing production of marrubiin was evidenced in connection with treatment with 80, 200 and 300 mg/L copper sulphate. Conclusion An efficient methodology for the extraction and determination of the amount of marrubiin in large sets of samples of M. vulgare plants was developed. Results demonstrated that marrubiin is an easily detectable marker useful for evaluating M. vulgare reaction to stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.