In life science, water is the ubiquitous solvent, sometimes even called the "matrix of life". There is increasing experimental and theoretical evidence that solvation water is not a passive spectator in biomolecular processes. New experimental techniques can quantify how water interacts with biomolecules and, in doing so, differs from "bulk" water. Terahertz (THz) absorption spectroscopy has turned out to be a powerful tool to study (bio)molecular hydration. The main concepts that have been developed in the recent years to describe the underlying solute-induced sub-picosecond dynamics of the hydration shell are discussed herein. Moreover, we highlight recent findings that show the significance of hydrogen bond dynamics for the function of antifreeze proteins and for molecular recognition. In all of these examples, a gradient of water motion toward functional sites of proteins is observed, the so-called "hydration funnel". By means of molecular dynamics simulations, we provide new evidence for a specific water-protein coupling as the cause of the observed dynamical heterogeneity. The efficiency of the coupling at THz frequencies is explained in terms of a two-tier (short- and long-range) solute-solvent interaction.
Water, being the universal solvent, acts as a competing agent in fundamental processes, such as folding, aggregation or biomolecular recognition. A molecular understanding of hydrophobic hydration is of central importance to understanding the subtle free energy differences, which dictate function. Ab initio and classical molecular dynamics simulations yield two distinct hydration water populations in the hydration shell of solvated tert -butanol noted as “HB-wrap” and “HB-hydration2bulk”. The experimentally observed hydration water spectrum can be dissected into two modes, centered at 164 and 195 cm –1 . By comparison to the simulations, these two bands are attributed to the “HB-wrap” and “HB-hydration2bulk” populations, respectively. We derive a quantitative correlation between the population in each of these two local water coordination motifs and the temperature dependence of the solvation entropy. The crossover from entropy to enthalpy dominated solvation at elevated temperatures, as predicted by theory and observed experimentally, can be rationalized in terms of the distinct temperature stability and thermodynamic signatures of “HB-wrap” and “HB-hydration2bulk”.
Hydration free energies are dictated by a subtle balance of hydrophobic and hydrophilic interactions. We present here a spectroscopic approach, which gives direct access to the two main contributions: Using THz-spectroscopy to probe the frequency range of the intermolecular stretch (150-200 cm À 1 ) and the hindered rotations (450-600 cm À 1 ), the local contributions due to cavity formation and hydrophilic interactions can be traced back. We show that via THz calorimetry these fingerprints can be correlated 1 : 1 with the group specific solvation entropy and enthalpy. This allows to deduce separately the hydrophobic (i.e. cavity formation) and hydrophilic contributions to thermodynamics, as shown for hydrated alcohols as a case study. Accompanying molecular dynamics simulations quantitatively support our experimental results. In the future our approach will allow to dissect hydration contributions in inhomogeneous mixtures and under non-equilibrium conditions.
We investigated molecular motions in the 0.3-350 ps time range of D2O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 Å revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.
Picosecond time scale dynamics of hydrated proteins has been connected with the onset of biological activity as it coincides with solvent-solute hydrogen bond rearrangements and amino acid rotational relaxation time scales. The presence and fluctuations of protein hydration water (PHW) largely influence protein motions that are believed to be slaved to those of the solvent, yet to date, how protein and hydration water dynamics are coupled remains unclear. Here, we provide a significant advance in characterizing this coupling; we present the first full study of both the longitudinal and transverse coherent collective motions in a protein-solvent system. The data show unexpectedly the presence in the water dynamics of collective modes belonging to the protein. The properties of these modes, in particular, their propagation velocities and amplitudes, indicate a strengthening of the interactions and a higher rigidity of the network of solvent molecules close to the protein surface. Accordingly, the present study presents the most compelling and clear evidence of a very strong dynamical coupling between a protein and its hydration water, previously suggested by studies using various experimental techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.