Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. Surgery represents the mainstay of treatment in early cases but often patients are primarily diagnosed in an advanced stage of disease and sometimes also distant metastases are present. Neoadjuvant therapy is therefore needed but drug resistance may influence response and concur to recurrent disease. At molecular level, it is a very heterogeneous group of diseases with about 30% of hereditary or familial cases. During colorectal adenocarcinomas development, epithelial cells from gastrointestinal trait acquire sequential genetic and epigenetic mutations in specific oncogenes and/or tumour suppressor genes, causing CRC onset, progression and metastasis. Molecular characterization of cancer associated mutations gives valuable information about disease prognosis and response to the therapy. Very early diagnosis and personalized care, as well as a better knowledge of molecular basis of its onset and progression, are therefore crucial to obtain a cure of CRC. In this review, we describe updated genetics, current diagnosis and management of CRC pointing out the extreme need for a multidisciplinary approach to achieve the best results in patient outcomes.
Epithelial-to-mesenchymal transition (EMT) confers stem cell-like phenotype and more motile properties to carcinoma cells. During EMT, the expression of E-cadherin decreases, resulting in loss of cell-cell adhesion and increased migration. Expression of Twist1 and other pleiotropic transcription factors, such as Snail, is known to activate EMT. We established primary colon cancer cell cultures from samples of operated patients and validated cultures by cytogenetic and molecular biology approaches. Western blot assay, quantitative real-time PCR and immunofluorescence were performed to investigate the expression of E-cadherin, vimentin, β-catenin, cytokeratin-20 and -18, Twist1, Snail, CD44, cyclooxygenase-2 (COX2), Sox2, Oct4 and Nanog. Moreover, cell differentiation was induced by incubation with LiCl-containing medium for 10 days. We observed that these primary colorectal cancer (CRC) cells lost expression of the E-cadherin epithelial marker, which was instead expressed in cancer and normal colon mucosa of the same patient, while overexpressed vimentin (mesenchymal marker), Twist1, Snail (EMT markers) and COX2. Cytokeratin-18 was expressed both in tissues and cell cultures. Expression of stem cell markers, such as CD44, Oct4 and Nanog, were also observed. Following differentiation with the glycogen synthase kinase 3β (GSK3β) inhibitor LiCl, the cells began to express E-cadherin and, at once, Twist1 and Snail expression was strongly downregulated, suggesting a MET-reverting process. In conclusion, we established primary colon mesenchymal cancer cell cultures expressing mesenchymal and epithelial biomarkers together with high level of EMT transcription factors. We propose that they could represent a good model for studying EMT and its reverting mechanism, the mesenchymal-to-epithelial transition (MET). Our observation indicates that LiCl, a GSK3β inhibitor, induces MET in vitro, suggesting that LiCl and GSK3β could represent, respectively, interesting drug, and target for CRC therapy.
Colorectal cancer has been ranked the third and second most prevalent of all cancers in men and women, respectively, and it represents the fourth most common cause of cancer deaths. In 2012, there were 1.4 million estimated cases of colorectal cancer worldwide, and 700,000 estimated deaths, which implies significant impact on public health, especially in economically-developed countries. In recent years, there has been an increase in the number of tumors, although this has been accompanied by decreased mortality, due to more appropriate and available information, earlier diagnosis, and improvements in treatment. Colorectal cancers are characterized by great genotypic and phenotypic heterogeneity, including tumor microenvironment and interactions between healthy and cancer cells. All of these traits confer a unique peculiarity to each tumor, which can thus be considered as an individual disease. Well conducted molecular and clinical characterization of each colorectal cancer is essential with a view to the implementation of precision oncology, and thus personalized care. This last aims at standardization of therapeutic plans chosen according to the genetic background of each specific neoplasm, to increase overall survival and reduce treatment side effects. Thus, prognostic and predictive molecular biomarkers assume a critical role in the characterization of colorectal cancer and in the determination of the most appropriate therapy
Cellular plasticity, the ability of cells to switch from an epitheial phenotype to a mesenchymal one and vice versa, plays a crucial role in tumour progression and metastases development. In 20-25% of patients with colon cancer and in 18% of patients with rectal cancer, metastases are present at the time of the first diagnosis. They are the first cause of colorectal cancer (CRC)-related mortality, defining stage IV CRC, which is characterized by a relatively short overall survival. We previously isolated two primary colon adenocarcinoma cell cultures that had undergone epithelial-mesenchymal transition (EMT), one with a high microsatellite instability phenotype (T88) and one with a chromosomal instability phenotype (T93). The aim of this study was to establish a model with which to study EMT, stemness features and cell plasticity in cancer progression and to examine the effects of incubation with lithium chloride (LiCl), a specific glycogen synthase kinase 3 β (GSK-3β) inhibitor, on these cellular processes. Indeed, GSK3β is an important regulator of cell survival, which promotes tumourigenesis in colon cells by facilitating the crosstalk between colorectal cancer pathways. Thus, we further characterized our system of adherent primary mesenchymal colon cancer cells and their paired tumourspheres by examining the expression and localisation of a panel of markers, including E- and N-cadherin, CD133, CD44v6, aldehyde dehydrogenase 1 (ALDH1) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). We also characterised the molecular features of these tumourspheres and examined their response to LiCl. Furthermore, we explored the effects of LiCl on cell motility and plasticity. We demonstrated that LiCl reduced cell migration, stemness features and cell plasticity. We also observed the atypical nuclear localisation of membrane proteins, including N-cadherin, CD133 and CD44v6 in mesenchymal tumour cells. Of note, CD133 and CD44v6 appeared to localise at the plasma membrane in cells with a more epithelial phenotype, suggesting that the cytoplasmic/nuclear localisation of these proteins could favour and characterize cell plasticity in colorectal cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.