OBJECTIVES:Celiac disease (CD)-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which CD-associated dysbiosis could concur to CD development or exacerbation are unknown. In this study, we analyzed the duodenal microbiome of CD patients.METHODS:The microbiome was evaluated in duodenal biopsy samples of 20 adult patients with active CD, 6 CD patients on a gluten-free diet, and 15 controls by DNA sequencing of 16S ribosomal RNA libraries. Bacterial species were cultured, isolated and identified by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). Inflammatory markers and cytokines were evaluated by immunofluorescence and ELISA, respectively.RESULTS:Proteobacteria was the most abundant and Firmicutes and Actinobacteria the least abundant phyla in the microbiome profiles of active CD patients. Members of the Neisseria genus (Betaproteobacteria class) were significantly more abundant in active CD patients than in the other two groups (P=0.03). Neisseria flavescens (CD-Nf) was the most abundant Neisseria species in active CD duodenum. Whole-genome sequencing of CD-Nf and control-Nf showed genetic diversity of the iron acquisition systems and of some hemoglobin-related genes. CD-Nf was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants.CONCLUSIONS:Marked dysbiosis and an abundance of a peculiar CD-Nf strain characterize the duodenal microbiome in active CD patients thus suggesting that the CD-associated microbiota could contribute to the many inflammatory signals in this disorder.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Despite advances in screening and therapeutics cancer continues to be one of the major causes of morbidity and mortality worldwide. The molecular profile of tumor is routinely assessed by surgical or bioptic samples, however, genotyping of tissue has inherent limitations: it represents a single snapshot in time and it is subjected to spatial selection bias owing to tumor heterogeneity. Liquid biopsy has emerged as a novel, non-invasive opportunity of detecting and monitoring cancer in several body fluids instead of tumor tissue. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), RNA (mRNA and microRNA), microvesicles, including exosomes and tumor “educated platelets” were recently identified as a source of genomic information in cancer patients which could reflect all subclones present in primary and metastatic lesions allowing sequential monitoring of disease evolution. In this review, we summarize the currently available information concerning liquid biopsy in breast cancer, colon cancer, lung cancer and melanoma. These promising issues still need to be standardized and harmonized across laboratories, before fully adopting liquid biopsy approaches into clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.