Previous evidence indicates that GH modulates thymic cell migration. In this study we approached this issue in vivo, studying thymocyte migration in GH transgenic animals and in normal mice treated intrathymically with GH. Extracellular matrix and chemokines are involved in thymocyte migration. In this respect, thymocyte adhesion to laminin was higher in GH-treated animals than controls, and the numbers of migrating cells in laminin-coated Transwells was higher in GH-transgenic and GH-injected mice. Additionally, CXC chemokine ligand 12 (CXCL12)-driven migration was higher in GH-Tg and GH-treated animals compared with controls. Interestingly, although CXCR4 expression on thymocytes did not change in GH-Tg mice, the CXCL12 intrathymic contents were higher. We found that CXCL12, in conjunction with laminin, would additionally enhance the migration of thymocytes previously exposed to high concentrations of GH in vivo. Lastly, there was an augmentation of recent thymic emigrants in lymph nodes from GH-Tg and GH-injected animals. In conclusion, enhanced thymocyte migration in GH transgenic mice as well as GH-injected mice results at least partially from a combined action of laminin and CXCL12. Considering that GH is presently being used as an adjuvant therapeutic agent in immunodeficiencies, including AIDS, the concepts defined herein provide important background knowledge for future GH-based immune interventions.
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
GH has been shown to modulate various functions of the thymus. We now demonstrate the production of human GH (hGH) by human thymic cells, and the expression of GH receptors in thymic epithelial cells (TEC) and in thymocytes at different stages of differentiation. The presence of hGH messenger RNA was shown by RT-PCR in both human thymocytes and in primary cultures of TEC. Moreover, immunoreactive hGH material was detected in culture media of thymocytes and TEC with the use of a sensitive immunoradiometric assay. GH receptor gene expression was shown in TEC in primary cultures and in fetal and postnatal TEC lines as well as in thymocytes. By immunocytochemistry, the presence of GH receptors in the various TEC preparations was confirmed. In cytofluorometric studies with the use of a biotinylated anti-GH receptor monoclonal antibody, we could show that GH receptors are predominantly expressed by immature thymocytes: over 90% of CD3ϩ cells (a phenotype characterizing the most immature T cell progenitors in the thymus) were GH receptor positive. Our results provide a molecular basis for an autocrine/paracrine mode of action of GH in the human thymus. (Endocrinology 139: [3837][3838][3839][3840][3841][3842] 1998)
Interactions between thymocytes and thymic epithelial cell (TEC) can be modulated by growth hormone via insulin-like growth factor-1 (IGF-1). In this study, we showed IGF-1 and IGF-1 receptor mRNA expression by human and murine TEC and thymocytes. Functionally, IGF-1 stimulates extracellular matrix production by human TEC. Moreover, pretreatment of murine TEC with IGF-1 increases their adhesion to thymocytes. Interestingly, we observed an increase in the frequency of CD4–CD8–CD90+ T cells which adhered to pretreated TEC, supporting the concept that IGF-1 may also act indirectly on intrathymic T cell differentiation and migration through the thymic epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.