Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A-and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP induces a phospholipase Cdependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
The neural crest develops in vertebrate embryos within a discrete domain at the neural plate boundary and eventually gives rise to a migrating population of cells that differentiate into a multitude of derivatives. We have shown that the broad-complex, tramtrack and bric a brac (BTB) domain-containing factor potassium channel tetramerization domain containing 15 (Kctd15) inhibits neural crest formation, and we proposed that its function is to delimit the neural crest domain. Here we report that Kctd15 is a highly effective inhibitor of transcription factor activating enhancer binding protein 2 (AP-2) in zebrafish embryos and in human cells; AP-2 is known to be critical for several steps of neural crest development. Kctd15 interacts with AP-2α but does not interfere with its nuclear localization or binding to cognate sites in the genome. Kctd15 binds specifically to the activation domain of AP-2α and efficiently inhibits transcriptional activation by a hybrid protein composed of the regulatory protein Gal4 DNA binding and AP-2α activation domains. Mutation of one proline residue in the activation domain to an alanine (P59A) yields a protein that is highly active but largely insensitive to Kctd15. These results indicate that Kctd15 acts in the embryo at least in part by specifically binding to the activation domain of AP-2α, thereby blocking the function of this critical factor in the neural crest induction hierarchy.neural plate border | Tfap2 | FoxD3 | transcriptional regulation T he neural crest (NC) is a uniquely vertebrate migratory cell population that gives rise to multiple derivatives, including craniofacial skeleton, peripheral nervous system, and melanocytes, whereas the neural plate border is a broad competence domain that contains progenitors for the NC and placodes (1, 2). When exposed to appropriate stimuli, progenitors acquire NC fate and express multiple factors that activate downstream genes (3-8), and several signaling cascades, including bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt), FGF, retinoic acid, and Notch are vital in NC induction (9-12). Deficits in NC development are responsible for many birth defects (13-15), broadening the interest in this system.An important regulatory component in NC development is transcription factor AP-2, a target of Wnt signaling (16-21). The AP-2 family contains five members (22), among which AP-2α, -β, and -γ act in NC formation. After dimerization, AP-2 binds to DNA at sites with the consensus sequence 5′-GCCNNNGGC-3′, affecting genes in a broad range of biological processes (22-27). AP-2 can be divided into two broad regions: the N-terminal part containing the transactivation domain (AD) and the C-terminal region harboring the DNA-binding domain (DBD) that also mediates dimerization (22,24). In zebrafish and Xenopus embryos, AP-2 is expressed in the NC anlage and has a role in NC formation (20,23,28,29). In zebrafish AP-2α is encoded by tfap2a, and lockjaw and montblanc mutations in this gene exhibit defects in NC deriva...
The reversible phosphorylation of tyrosyl residues in proteins is a cornerstone of the signaling pathways that regulate numerous cellular responses. Protein tyrosine phosphorylation is controlled through the concerted actions of protein-tyrosine kinases and phosphatases. The goal of the present study was to unveil the mechanisms by which protein tyrosine dephosphorylation modulates secretion. The acrosome reaction, a specialized type of regulated exocytosis undergone by sperm, is initiated by calcium and carried out by a number of players, including tyrosine kinases and phosphatases, and fusion-related proteins such as Rab3A, ␣-SNAP, N-ethylmaleimide-sensitive factor (NSF), SNAREs, complexin, and synaptotagmin VI. We report here that inducers were unable to elicit the acrosome reaction when permeabilized human sperm were loaded with anti-PTP1B antibodies or with the dominant-negative mutant PTP1B D181A; subsequent introduction of wild type PTP1B or NSF rescued exocytosis. Wild type PTP1B, but not PTP1B D181A, caused cis SNARE complex dissociation during the acrosome reaction through a mechanism involving NSF. Unlike its non-phosphorylated counterpart, recombinant phospho-NSF failed to dissociate SNARE complexes from rat brain membranes. These results strengthen our previous observation that NSF activity is regulated rather than constitutive during sperm exocytosis and indicate that NSF must be dephosphorylated by PTP1B to disassemble SNARE complexes. Interestingly, phospho-NSF served as a substrate for PTP1B in an in vitro assay. Our findings demonstrate that phosphorylation of NSF on tyrosine residues prevents its SNARE complex dissociation activity and establish for the first time a role for PTP1B in the modulation of the membrane fusion machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.