Medicinal mushrooms have important health benefits and exhibit a broad spectrum of pharmacological activities, including antiallergic, antibacterial, antifungal, anti-inflammatory, antioxidative, antiviral, cytotoxic, immunomodulating, antidepressive, antihyperlipidemic, antidiabetic, digestive, hepatoprotective, neuroprotective, nephroprotective, osteoprotective, and hypotensive activities. The growing interest in mycotherapy requires a strong commitment from the scientific community to expand clinical trials and to propose supplements of safe origin and genetic purity. Bioactive compounds of selected medicinal mushrooms and their effects and mechanisms in in vitro and in vivo clinical studies are reported in this review. Besides, we analyzed the therapeutic use and pharmacological activities of mushrooms.
Structure of fungal communities is known to be influenced by host plants and environmental conditions. However, in most cases, the dynamics of these variation patterns are poorly understood. In this work, we compared richness, diversity, and composition between assemblages of endophytic and rhizospheric fungi associated to roots of two plants with different lifestyles: the halophyte Inula crithmoides and the non-halophyte I. viscosa (syn. Dittrichia viscosa L.), along a spatially short salinity gradient. Roots and rhizospheric soil from these plants were collected at three points between a salt marsh and a sand dune, and fungi were isolated and characterized by ITS rDNA sequencing. Isolates were classified in a total of 90 operational taxonomic units (OTUs), belonging to 17 fungal orders within Ascomycota and Basidiomycota. Species composition of endophytic and soil communities significantly differed across samples. Endophyte communities of I. crithmoides and I. viscosa were only similar in the intermediate zone between the salt marsh and the dune, and while the latter displayed a single, generalist association of endophytes, I. crithmoides harbored different assemblages along the gradient, adapted to the specific soil conditions. In the lower salt marsh, root assemblages were strongly dominated by a single dark septate sterile fungus, also prevalent in other neighboring salt marshes. Interestingly, although its occurrence was positively correlated to soil salinity, in vitro assays revealed a strong inhibition of its growth by salts. Our results suggest that host lifestyle and soil characteristics have a strong effect on endophytic fungi and that environmental stress may entail tight plant-fungus relationships for adaptation to unfavorable conditions.
The mushrooms have contributed to the development of active ingredients of fundamental importance in the field of pharmaceutical chemistry as well as of important tools in human and animal health, nutrition, and functional food. This review considers studies on the beneficial effects of medicinal mushrooms on the nutrition and health of humans and farm animals. An overview of the chemical structure and composition of mycochemicals is presented in this review with particular reference to phenolic compounds, triterpenoids and sterols, fatty acids and lipids, polysaccharides, proteins, peptides, and lectins. The nutritional value and chemical composition of wild and cultivated mushrooms in Italy is also the subject of this review which also deals with mushrooms as nutraceuticals and the use of mushrooms in functional foods. The nutraceutical benefits of UV irradiation of cultivated species of basidiomycetes to generate high amounts of vitamin D2 is also highlighted and the ability of the muhsrooms to inhibit glycation is analyzed. Finally, attention is paid to studies on bioactivities of some Italian wild and cultivated mushrooms with particular reference to species belonging to the genus Pleurotus. The review highlights the potential of medicinal mushrooms in the production of mycochemicals that represent a source of drugs, nutraceutical, and functional food. Graphic abstract
Fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy (CLSM) was applied to detect and localize bacterial colonies in leaf tissues of Vitis vinifera. Leaves were cleared to minimize the autofluorescence of plant fragments. The use of fluorescently labeled bacterial probe EUB338 on discolored grapevine leaf disks allowed the estimation of the spatial distribution of different bacterial colonies. In particular, bacterial colonies were found in veins, cells, hairs, intercellular spaces, and in cut edges of leaf disks of both non-Acremonium byssoides-colonized and A. byssoides-colonized leaves of five different cultivars. Furthermore, CLSM confirmed that bacteria were located in different layers of the leaf tissue. At the same time, one cleared disk of each foliar sample was crushed and plated on Plate Count Agar to isolate cultivable endophytic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.