This study aimed to assess post-harvest contamination with mycotoxins in the context of the geographic and agroclimatic conditions in Romania in 2012–2015, a period that was characterized by extreme meteorological events and the effects of climate change. The samples were randomly sampled from five agricultural regions of Romania and analyzed for mycotoxins by enzyme-linked immunosorbent assay. An SPSS analysis was done to explore correlations between mycotoxins (deoxynivalenol—DON, aflatoxins—AF, ochratoxin A—OTA, zearalenone—ZEA), product types (raw cereal, processed cereal, cereal-based food), geographic coordinates (latitude, longitude, agricultural region), and agroclimatic factors (air temperature, precipitation, soil moisture reserve, aridity index, soil type). In the southeast part of the Southern Plain and Dobrogea (Baragan Plain, located at 44–45° N, 26–27° E), contamination with AF and OTA was higher in raw and processed cereals (maize in silo, silo corn germs) in the dry years (2012 and 2013), and contamination with DON was high in processed cereals (wheat flour type 450) in the rainy year (2014). DON and OTA contamination were significantly correlated with cumulative precipitation in all years, while AF and ZEA contamination were non-significantly correlated with climatic factors and aridity indices. The distribution of mycotoxins by product type and the non-robust correlations between post-harvest mycotoxins and agrometeorological factors could be explained by the use of quality management systems that control cereal at warehouse receptions, performant processing technologies, and the quality of storage spaces of agri-food companies. The Baragan Plain is Romania’s most sensitive area to the predicted climate change in southeast Europe, which may be associated with its increased cereal contamination with AF and OTA.
This article aims to evaluate deoxynivalenol occurrence in triticale crops in Romania in years with extreme weather events (2012: Siberian anticyclone with cold waves and heavy snowfall; 2013 and 2014: “Vb” cyclones with heavy precipitation and floods in spring). The deoxynivalenol level in triticale samples (N = 236) was quantified by ELISA. In Romania, the extreme weather events favoured deoxynivalenol occurrence in triticale in Transylvania and the southern hilly area (44–47°N, 22–25°E) with a humid/balanced-humid temperate continental climate, luvisols and high/very high risk of floods. Maximum deoxynivalenol contamination was lower in the other regions, although heavy precipitation in May–July 2014 was higher, with chernozems having higher aridity. Multivariate analysis of the factors influencing deoxynivalenol occurrence in triticale showed at least a significant correlation for all components of variation source (agricultural year, agricultural region, average of deoxynivalenol, average air temperature, cumulative precipitation, soil moisture reserve, aridity indices) (p-value < 0.05). The spatial and geographic distribution of deoxynivalenol in cereals in the countries affected by the 2012–2014 extreme weather events revealed a higher contamination in Central Europe compared to southeastern and eastern Europe. Deoxynivalenol occurrence in cereals was favoured by local and regional agroclimatic factors and was amplified by extreme weather events.
This article assesses the occurrence of Fusarium-damaged kernels (FDKs) in common wheat (Triticum aestivum) under the influence of environmental factors and extreme weather events in Romania (exceptionally high air temperatures and extreme pedological drought produced by a dipole block in summer 2015, and extreme precipitation and floods produced by an omega block in spring 2016). Wheat samples (N = 272) were analyzed for FDKs via visual estimation and manual weighing according to ISO 7970 and are statistically evaluated using SPSS. The dipole block in 2015 reduced the effects of environmental factors to non-significant correlations with FDKs, while the omega block in 2016 was non-significantly to very significantly correlated with FDKs in the northwestern and western regions. The occurrence of FDKs was favored for wheat cultivation in acidic soils and inhibited in alkaline soils. Wheat samples with FDKs ≥ 1% were sampled from crops grown in river meadows with high and very high risks of flooding. Knowing the contaminants’ geographical and spatial distributions under the influence of regular and extreme weather events is important for establishing measures to mitigate the effects of climate change and to ensure human and animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.