A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds’ ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants’ ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.
Recent evidence has shown that, like adults and children, 9-month-old infants manifest an operational momentum (OM) effect during non-symbolic arithmetic, whereby they overestimate the outcomes to addition problems, and underestimate the outcomes to subtraction problems. Here we provide the first evidence that OM occurs for transformations of non-numerical magnitudes (i.e., spatial extent) during ordering operations. Twelve-month-old infants were tested in an ordinal task in which they detected and represented ascension or descension in physical size, and then responded to ordinal sequences that exhibited greater or lesser sizes. Infants displayed longer looking time to the size change whose direction violated the operational momentum experienced during habituation (i.e., the smaller sequence in the ascension condition and the larger sequence in the descension condition). The presence of momentum for ordering size during infancy suggests that continuous quantities are represented spatially during the first year of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.