The cattle tick Rhipicephalus microplus is one of the most important ectoparasites with great sanitary and economic impact for cattle rearing worldwide. Ivermectin is commonly used to control tick populations, but its use over the last 30 years has led to the development of resistant populations of R. microplus, and a concomitant loss of efficacy. In this context, we aimed to determine the metabolic mechanisms that contribute to ivermectin resistance in a resistant strain of this species. We performed lethal time bioassays with inhibitors of detoxifying enzymes and xenobiotic transporters (four detoxification pathways) using two strains of ticks: a susceptible strain, Mozo, and a resistant strain, Juarez. We used four inhibitors to test the involvement of different families of proteins responsible for detoxification of ivermectin, namely cytochrome P450, esterases, glutathione-S-transferase, and ATP Binding Cassette Transporters. We calculated the synergistic factor for each inhibitor and strain. To different degrees, all tested inhibitors altered the mortality rates in the strain Juarez, indicating that multiple mechanisms are responsible for the resistant phenotype. Detoxification mechanisms mediated by ABC transporters were observed to be the most important. Esterases, glutathione-S-transferases, and cytochrome-oxidases played less important roles in detoxification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.