BackgroundPAX8 is a member of the paired box (Pax) multigene family of transcription factors, which are involved in the developmental and tissue-specific control of the expression of several genes in both vertebrates and invertebrates. Previously, several studies reported that PAX8 is expressed at high levels in specific types of tumors. In particular, PAX8 has been recently reported to be conspicuously expressed in human ovarian cancer, but the functional role of PAX8 in the carcinogenesis of this type of tumor has not been addressed. In this study, we investigated the contribution of PAX8 in ovarian cancer progression.MethodsStable PAX8 depleted ovarian cancer cells were generated using short hairpin RNA (shRNA) constructs. PAX8 mRNA and protein were detected by RT-PCR, immunoblot and immunofluorescence. Cell proliferation, motility and invasion potential of PAX8 silenced cells were analyzed by means of growth curves, wound healing and Matrigel assays. In addition, PAX8 knockdown and control cells were injected into nude mice for xenograft tumorigenicity assays. Finally, qPCR was used to detect the expression levels of EMT markers in PAX8-overexpressing and control cells.ResultsHere, we show that PAX8 plays a critical role in the migration, invasion and tumorigenic ability of ovarian cancer cells. Our results show that RNA interference-mediated knockdown of PAX8 expression in SKOV-3 ovarian cancer cells produces a significant reduction of cell proliferation, migration ability and invasion activity compared with control parental SKOV-3 cells. Moreover, PAX8 silencing strongly suppresses anchorage-independent growth in vitro. Notably, tumorigenesis in vivo in a nude mouse xenograft model is also significantly inhibited.ConclusionsOverall, our results indicate that PAX8 plays an important role in the tumorigenic phenotype of ovarian cancer cells and identifies PAX8 as a potential new target for the treatment of ovarian cancer.
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.