We show that a relatively simple top-down fabrication can be used to locally deform germanium in order to achieve uniaxial tensile strain of up to 4%. Such high strain values are theoretically predicted to transform germanium from an indirect to a direct gap semiconductor. These values of strain were obtained by control of the perimetral forces exerted by epitaxial SiGe nanostructures acting as stressors. These highly strained regions can be used to control the band structure of silicon-integrated germanium epilayers.
The remote manipulation of micro and nano-sized magnetic particles carrying molecules or biological entities over a chip surface is of paramount importance for future on-chip applications in biology and medicine. In this paper, we present a method for the on-chip demultiplexing of individual magnetic
particles using bifurcated magnetic nano-conduits for the propagation of constrained domain walls (DWs). We demonstrate that the controlled injection and propagation of a domain wall in a bifurcation allow capturing, transporting, and sorting a single magnetic particle between two predefined paths. The cascade of n levels of such building blocks allows for the implementation of a variety of complex sorting devices as, e.g., a demultiplexer for the controlled sorting among 2n
paths
Fast-scanning X-ray nanodiffraction microscopy is used to directly visualize the misfit dislocation network in a SiGe film deposited on a pit-patterned Si substrate at the beginning of plastic relaxation. X-ray real-space diffracted intensity maps are compared to topographic atomic force microscopy images, in which crosshatch lines can be seen. The change in intensity distribution as a function of the incidence angle shows localized variations in strain within the SiGe film. These variations, which reflect the order imposed by the substrate pattern, are attributed to the presence of both bunches of misfit dislocations and defect-free regions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.