Ridge regression is an algorithm that takes as input a large number of data points and finds the best-fit linear curve through these points. The algorithm is a building block for many machine-learning operations. We present a system for privacy-preserving ridge regression. The system outputs the best-fit curve in the clear, but exposes no other information about the input data. Our approach combines both homomorphic encryption and Yao garbled circuits, where each is used in a different part of the algorithm to obtain the best performance. We implement the complete system and experiment with it on real data-sets, and show that it significantly outperforms pure implementations based only on homomorphic encryption or Yao circuits.
Abstract. We construct the first (key-policy) attribute-based encryption (ABE) system with short secret keys: the size of keys in our system depends only on the depth of the policy circuit, not its size. Our constructions extend naturally to arithmetic circuits with arbitrary fan-in gates thereby further reducing the circuit depth. Building on this ABE system we obtain the first reusable circuit garbling scheme that produces garbled circuits whose size is the same as the original circuit plus an additive poly(λ, d) bits, where λ is the security parameter and d is the circuit depth. All previous constructions incurred a multiplicative poly(λ) blowup.We construct our ABE using a new mechanism we call fully keyhomomorphic encryption, a public-key system that lets anyone translate a ciphertext encrypted under a public-key x into a ciphertext encrypted under the public-key (f (x), f) of the same plaintext, for any efficiently computable f . We show that this mechanism gives an ABE with short keys. Security of our construction relies on the subexponential hardness of the learning with errors problem.We also present a second (key-policy) ABE, using multilinear maps, with short ciphertexts: an encryption to an attribute vector x is the size of x plus poly(λ, d) additional bits. This gives a reusable circuit garbling scheme where the garbled input is short. This paper is the result of merging two works [GGH + ] and [BNS].
Lattice-based cryptography offers some of the most attractive primitives believed to be resistant to quantum computers. Following increasing interest from both companies and government agencies in building quantum computers, a number of works have proposed instantiations of practical post-quantum key exchange protocols based on hard problems in ideal lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. While ideal lattices facilitate major efficiency and storage benefits over their nonideal counterparts, the additional ring structure that enables these advantages also raises concerns about the assumed difficulty of the underlying problems. Thus, a question of significant interest to cryptographers, and especially to those currently placing bets on primitives that will withstand quantum adversaries, is how much of an advantage the additional ring structure actually gives in practice. Despite conventional wisdom that generic lattices might be too slow and unwieldy, we demonstrate that LWE-based key exchange is quite practical: our constant time implementation requires around 1.3ms computation time for each party; compared to the recent NewHope R-LWE scheme, communication sizes increase by a factor of 4.7×, but remain under 12 KiB in each direction. Our protocol is competitive when used for serving web pages over TLS; when partnered with ECDSA signatures, latencies increase by less than a factor of 1.6×, and (even under heavy load) server throughput only decreases by factors of 1.5× and 1.2× when serving typical 1 KiB and 100 KiB pages, respectively. To achieve these practical results, our protocol takes advantage of several in-* Large parts of this work were done when Valeria Nikolaenko was an intern at Google.
The existence of optimal algorithms is not known for any decision problem in NP \ P. We consider the problem of testing the membership in the image of an injective function. We construct optimal heuristic algorithms for this problem in both randomized and deterministic settings (a heuristic algorithm can err on a small fraction 1 d of the inputs; the parameter d is given to it as an additional input). Thus for this problem we improve an earlier construction of an optimal acceptor (that is optimal on the negative instances only) and also give a deterministic version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.