A significant proportion of the solar irradiance that reaches the Earth's surface is normally attenuated by atmospheric properties and overcast conditions related to the rainy season. The Solar Analyst (SA) model, irradiance and long term precipitation data were used to assess this relationship in Guadalajara, Mexico. A spatial analysis based on morphological and statistical criteria increased the model's certainty. The SA model explains 95.4% of the irradiation variability observed on the ground, with average uncertainties of 3.7% during clear sky conditions in the dry season and 4.4% on sunny days in the wet season. The meteorological data analysis shows that total precipitation in 2014 had an atypical temporal distribution and was slightly lower (12.6%) than the average from 1991 to 2012. A deficit of 39% in precipitation compared to the long term average was found in the first half of the season, which was later partially compensated. This deficit was interpreted as a temporary delay in high values of precipitation. Based on the potential average irradiation from the SA model and field observations, it can be concluded that overcast conditions related to rainfall through 2014 attenuated approximately 28.5% of the incoming solar energy. Taking the global energy balance into account, this fraction was higher in comparison to the energy proportion reflected by the cloud's albedo (ca 23%). These results suggest that both the high proportion of energy attenuated and atypical weather conditions may be local effects of large-scale phenomena such as the El Niño-Southern Oscillation.
Polycyclic aromatic hydrocarbons (PAHs) and quinones in the gas phase and as submicron particles raise concerns due to their potentially carcinogenic and mutagenic properties. The majority of existing studies have investigated the formation of quinones, but it is also important to consider both the primary and secondary sources to estimate their contributions. The objectives of this study were to characterize PAHs and quinones in the gas and particulate matter (PM 1 ) phases in order to identify phase distributions, sources, and cancer risk at two urban monitoring sites in the Guadalajara Metropolitan Area (GMA) in Mexico. The simultaneous gas and PM 1 phases samples were analyzed using a gas chromatography-mass spectrometer. The lifetime lung cancer risk (LCR) due to PAH exposure was calculated to be 1.7 × 10 −3 , higher than the recommended risk value of 10 −6 , indicating a potential health hazard. Correlations between parent PAHs, criteria pollutants, and meteorological parameters suggest that primary sources are the main contributors to the Σ 8 Quinones concentrations in PM 1 , while the secondary formation of 5,12-naphthacenequinone and 9,10-anthraquinone may contribute less to the observed concentration of quinones. Additionally, naphthalene, acenaphthene, fluorene, phenanthrene, and anthracene in PM 1 , suggest photochemical degradation into unidentified species. Further research is needed to determine how these compounds are formed.
The diel variation of meteorological conditions strongly influences the formation processes of secondary air pollutants. However, due to the complexity of sampling highly reactive chemical compounds, significant information about their transformation and source can be lost when sampling over long periods, affecting the representativeness of the samples. In order to determine the contribution of primary and secondary sources to ambient levels of polyaromatic hydrocarbons (PAHs) and quinones, measurements of gas and PM1 phases were conducted at an urban site in the Guadalajara Metropolitan Area (GMA) using a 4-h sampling protocol. The relation between PAHs, quinones, criteria pollutants, and meteorology was also addressed using statistical analyses. Total PAHs (gas phase + PM1 phase) ambient levels ranged between 184.03 ng m−3 from 19:00 to 23:00 h and 607.90 ng m−3 from 07:00 to 11:00 h. These figures both coincide with the highest vehicular activity peak in the morning and at night near the sampling site, highlighting the dominant role of vehicular emissions on PAHs levels. For the gas phase, PAHs ranged from 177.59 to 595.03 ng m−3, while for PM1, they ranged between 4.81 and 17.44 ng m−3. The distribution of the different PAHs compounds between the gas and PM1 phases was consistent with their vapour pressure (p °L) reported in the literature, the PAHs with vapour pressure ≤ 1 × 10−3 Pa were partitioned to the PM1, and PAHs with vapour pressures ≥ 1 × 10−3 Pa were partitioned to the gas phase. PAHs diagnostic ratios confirmed an anthropogenic emission source, suggesting that incomplete gasoline and diesel combustion from motor vehicles represent the major share of primary emissions. Quinones ambient levels ranged between 18.02 ng m−3 at 19:00–23:00 h and 48.78 ng m−3 at 15:00–19:00 h, with significant increases during the daytime. The distribution of quinone species with vapour pressures (p °L) below 1 × 10−4 Pa were primarily partitioned to the PM1, and quinones with vapour pressures above 1 × 10−4 Pa were mainly partitioned to the gas phase. The analysis of the distribution of phases in quinones suggested emissions from primary sources and their consequent degradation in the gas phase, while quinones in PM1 showed mainly secondary formation modulated by UV, temperature, O3, and wind speed. The sampling protocol proposed in this study allowed obtaining detailed information on PAHs and quinone sources and their secondary processing to be compared to existing studies within the GMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.