To help determine the major factors associated with alien plant in a newly invaded mountain range; we analyzed the distribution patterns of woody alien species along the altitudinal gradient of the Córdoba mountains, in relation to biotic, abiotic and anthropogenic factors. We selected 303 plots using a Geographic Information System (GIS) covering all the variability of these factors. In the field we registered woody alien occurrence in these 303 and in 303 additional neighbor plots. We used 12 biotic, abiotic and anthropogenic variables from the GIS to predict the probability of presence of alien species through a logistic model. Then, we analyzed if neighbor alien occurrences could explain some additional variance. We created a probability map with 4 categories of alien occurrence which was then validated by new field sampling. Occurrence of woody aliens was highest in the eastern slope (with longer history of species introduction), at low altitudes, near sources of propagule pressure (human settlements, roads and neighbor sites with established alien plants), and associated to sheltered topographies. In the upper belt of the Córdoba Mountains woody invasion is incipient and thus in a transient stage. Accordingly, propagule pressure seems to be the major factor at play, while the relevance of disturbance and biotic interactions is less clear.
Roadsides may homogenize the distribution of native species and act as corridors for the spread of alien taxa. We examined the variation in native and alien plant species richness and composition at two spatial scales defined by altitude and habitat type (edges and fill slopes), as well as the relationship between native and exotic species richness in roadside plant communities in mountains from central Argentina. Following a gradient from 1100 to 2200 m a.s.l. along a mountain road, plant species cover was recorded within sample plots of 30 m ¥ 10 m systematically located at 100-m altitude intervals on both roadside habitats. Although native species richness decreased with altitude and composition changed accordingly, the number of alien species peaked at both extremes of the elevation gradient and did not reflect an altitudinal replacement of chorological groups. The number of both native and alien species was higher in roadside edges, but a negative association between the richness of native and alien species occurred only on fill slopes, suggesting that roadside habitats differ in their susceptibility to plant species colonization and in the mechanisms driving native and alien species richness. Our results highlight the importance of altitude and roadside habitat as factors controlling plant species richness and composition along roadside communities in central Argentina. Although altitude acts as a filter for native plants, it apparently did not constrain the establishment of alien species along the studied roadsides, indicating that the influence of this road as a plant species corridor may increase with time, promoting the opportunities for aliens to expand their current distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.