Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.
Postpartum cardiomyopathy (PPCM) is a disease of unknown etiology and exposes women to high risk of mortality after delivery. Here, we show that female mice with a cardiomyocyte-specific deletion of stat3 develop PPCM. In these mice, cardiac cathepsin D (CD) expression and activity is enhanced and associated with the generation of a cleaved antiangiogenic and proapoptotic 16 kDa form of the nursing hormone prolactin. Treatment with bromocriptine, an inhibitor of prolactin secretion, prevents the development of PPCM, whereas forced myocardial generation of 16 kDa prolactin impairs the cardiac capillary network and function, thereby recapitulating the cardiac phenotype of PPCM. Myocardial STAT3 protein levels are reduced and serum levels of activated CD and 16 kDa prolactin are elevated in PPCM patients. Thus, a biologically active derivative of the pregnancy hormone prolactin mediates PPCM, implying that inhibition of prolactin release may represent a novel therapeutic strategy for PPCM.
IL-6-/- mice showed impaired leukocyte accumulation in subcutaneous air pouches. Defective leukocyte accumulation was not due to a reduced migratory capacity of IL-6-/- leukocytes and was associated with a reduced in situ production of chemokines. These observations led to a reexamination of the interaction of IL-6 with endothelial cells (EC). EC express only the gp130 signal transducing chain and not the subunit-specific IL-6R and are therefore unresponsive to IL-6. However, EC are responsive to a combination of IL-6 and soluble IL-6R as measured by the activation of STAT3, chemokine expression, and augmentation of ICAM-1. Activation by IL-6-IL-6R complexes was inhibited by an IL-6 receptor antagonist and potentiated by a superagonist. Hence, in vivo and in vitro evidence supports the concept that the IL-6 system plays an unexpected positive role in local inflammatory reactions by amplifying leukocyte recruitment.
Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.