Electrodeposition of cobalt alloys with refractory metals makes it possible to obtain coatings with a unique combination of physicochemical properties that are unattainable using other deposition methods. For the deposition of high-quality coatings with a cobalt-vanadium alloy, it is proposed to use a citrate electrolyte. Co-V coating was deposited on steel samples from citrate electrolyte at a temperature of 35-40 °C and a current density of 5-12 A/dm2 using soluble cobalt anodes. The vanadium content in the coating deposited at a ligand concentration of 0.3 mol / dm3 is 0.1-0.5 wt%. An increase in the concentration of the ligand to 0.4 mol / dm3 promotes the binding of cobalt into complexes, and, accordingly, the vanadium content in the coating increases to 0.6-1.2 wt.%. Moreover, the tendency to change the percentage of alloying elements with current density remains. Deposition coatings are dense, shiny, without internal stresses and cracks. The proposed compositions of electrolytes and modes of deposition of Co-V coatings with a vanadium content of up to 1.5 wt.% And a current efficiency of 50%. It was found that Co-V coatings are characterized by increased carbon content and are substitutional solid solutions, and the surface morphology of the obtained coatings depends significantly on the current density and changes from fine-crystalline to globular spheroid. The optimal current density for obtaining high-quality coatings with a cobalt alloy in a galvanostatic mode is ік = 10 A / dm2. Management of the storage of galvanic cobalt alloys in a quite wide range of concentrations of alloy-forming components is achieved by varying the electrolysis parameters, which allows the deposition technology to be adapted to the needs of the modern market.
The composite coatings electrodeposition with the refractory metals and zirconium with cobalt makes it possible to obtain a coating with a unique combination of physicochemical properties that are unattainable when using other application methods. One of the reasons for the limited use of the electrolytic method of coating with such composites is the difficulty of controlling the process. The properties of alloys of the iron subgroup with refractory metals and composites depend not only on the chemical composition (the content of the refractory component) but also on the deposition conditions. Varying the polarization current density allows the creation of coatings of different compositions and, accordingly, different functional properties. The basis of the work was experimental research on the physicochemical patterns of electrolytic deposition of cobalt-based composite coatings by the galvanostatic current. The purpose of the work was to develop a mathematical model of the dependence of the cobalt-containing composite coatings formation on the polarization current density. The problem of describing the electrochemical deposition of metals, alloys and composite coatings is relevant since mathematical modeling is an integral part of the development of new and improvement of existing systems. A mathematical model is proposed to control the composition of composite electrolytic coatings based on cobalt, which allows obtaining coatings of a predetermined composition when varying the density of the operating current. It has been established that the composition of coatings, in particular the content of Co, Mo, W, can be controlled by varying the electrolysis current density, using quite simple developed mathematical models. The inclusion of Zr in the composition of composite coatings is described by a more complex model, in which the parameter values depend on both the concentration of the electrolyte components and the electrolysis conditions.
Доведено можливість електросинтезу і керування складом і морфологією поверхні композиційних електролітичних покривів кобальту з тугоплавкими металами варіюванням густини імпульсного струму. Композити на основі кобальту, осаджені на підкладку з міді з білігандних цитратно-пірофосфатних електролітів при густині імпульсного струму 4 А/дм 2 , відрізняються розгалуженою поверхнею і більш рівномірним розподілом компонентів по поверхні, підвищеним вмістом вольфраму, що майже у 5 разів переважає покриви, осаджені при 10 А/дм 2 , та зниженням відсотку оксигену удвічі (до 5,5 %). Це пояснюється гальмуванням реакції виділення газоподібного водню та участю адатомів гідрогену у хімічному відновленні проміжних оксидів вольфраму до металу під час переривання поляризації. Покриви, осаджені із застосуванням імпульсного струму, можна вважати композитами складу Co-W-ZrO2, в яких оксидна фаза утворюється безпосередньо в електродному процесі як інтермедіат неповного відновлення вольфраматів. Топографія плівок відрізняється наявністю зерен еліптичної і сферичної форми з розмірами кристалітів 80 -180 нм. На основній поверхні зустрічаються виступи (крупні зерна) діаметром 1 -3 мкм. Фрактальна розмірність поверхні становить 2,77, що свідчить про 3D механізм роста кристалів при формуванні покриву. За параметрами шорсткості поверхні Ra і Rq покриви відносяться до 9 класу шорсткості. За фазовим складом композити є переважно аморфними матеріалами, які містять нанокристалічний кобальт та інтерметаліди Co3W і Zr3Co. Завдяки кількісному і фазовому складу, морфології і фрактальності поверхні мікротвердість і корозійна стійкість систем Co-W-ZrO2, одержаних за густини струму 4 А/дм 2 , на 20 % перевищують параметри покривів, одержаних при 10 А/дм 2 , і у 3 рази переважає відповідні характеристики підкладки.Ключові слова: композиційні електролітичні покриви, імпульсний електроліз, вольфрам, кобальт, цирконій, фрактальний аналіз поверхні.
mode are characterized by lower porosity. The surface free energy for metal and composite coatings was calculated, the values of which are 127.74 mJ/m 2 and 118.10 mJ/m 2 . When testing the electrocatalytic activity of Fe-Co-Mo ternary alloys in the reaction of electrolytic hydrogen evolution, high values of the hydrogen exchange current density were obtained both for metal and composite coatings.
Електроосадження композиційних покриттів тугоплавкими металами та цирконієм з кобальтом дозволяє отримувати покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Варіюванням складу електроліту в гальваностатичному режимі не вдається отримати якісні композиційні покриття с високим вмістом тугоплавких компонентів та виходом за струмом. Як альтернативу запропоновано використання імпульсного режиму електролізу, що дозволяє вдосконалити технологічний процес отримання композиційних покриттів. Підбір співвідношення тривалості імпульсу та паузи дозволяє уникати введення дорогих добавок і співосаджувати в сплав метали, які в гальваностатичному режимі отримати неможливо. Тому метою роботи було встановлення параметрів електрохімічного нанесення композиційних покриттів кобальту з тугоплавкими металами і цирконієм з нетоксичних електролітів імпульсним електролізом. Використання імпульсного режиму при співвідношенні тривалості імпульсу 110 -3 -2010 -3 с и тривалості паузи 210 -3 -2010 -3 с та амплітуді катодної густини струму 2-10 А/дм 2 надає можливість одержати композиційні сплави на основі кобальту з підвищеним вмістом цирконію, молібдену і вольфраму порівняно зі стаціонарним режимам. Підвищення робочих густин струму приводить до збільшення вмісту тугоплавких металів в композиційних сплавах, що містять молібден, а також відбувається зменшення розміру зерен у поверхневому шарі сплаву Сo-Mo-WхОy. На підставі аналізу експериментальних досліджень встановлено вплив амплітуди струму і частоти імпульсів на вихід за струмом і склад композиційних покриттів Сo-Mo-WхОy, Co-W-ZrO2 і Co-Mo-ZrO2. Управління складом гальванічних сплавів Сo-Mo-WхОy, Co-Mo-ZrO2 і Co-W-ZrO2 в досить широкому діапазоні концентрацій сплавотвірних компонентів досягається варіюванням параметрів імпульсного електролізу, що дозволяє адаптувати технологію нанесення до потреб сучасного ринку.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.