Urbanization is a major driver of stream ecosystem impairment and is typically associated with multiple stressors and species loss. A challenge is to understand how those stressors alter the relationship between biodiversity and ecosystem functioning (B-EF). Amongst the Andean streams of southern Ecuador, we assessed the response of shredder diversity and organic matter breakdown (OMB) to urbanization and identified the urban-associated stressors disrupting the B-EF relationship. A leaf-litter bag experiment during stable flow conditions in 2016 was carried out to quantify total OMB and shredder-mediated OMB, which was estimated to represent the B-EF relationship. We calculated the taxonomic and functional diversity of shredder invertebrates associated with leaf packs. Also, a suite of physicochemical and habitat stressors was measured weekly during the field experiment. Along with the urbanization gradient, both taxonomic and functional diversity of shredders declined while OMB rates decreased. Shredders were absent and their contribution to OMB was null at the most urbanized sites. The B-EF relationship was interrupted through nutrient enrichment, physical habitat homogenization, riparian vegetation disturbance, and leaflitter availability as a consequence of urbanization. Our results demonstrate how species loss spreads to and affects ecosystem functions in urbanized streams and how environmental stressors alter the B-EF relationship. Better land-use practices are crucial in Andean catchments to guarantee ecosystem services which are the result of successful B-EF relationships.
Urbanization is a major driver of stream ecosystems impairment and often associated with multiple stressors and species loss. A challenge is to understand how those stressors alter the relationship between biodiversity and ecosystem functioning (B-EF). In Andean streams of southern Ecuador, we assessed the response of shredder diversity and organic matter breakdown (OMB) to urbanization and identified the urban-associated stressors disrupting the B-EF relationship. A leaf-litter bag experiment during stable flow conditions in 2016 was carried out to quantify total OMB and shredder-mediated OMB, which was estimated to represent the B-EF relationship. We calculated the taxonomic and functional diversity of shredder invertebrates associated with leaf packs. Also, a suite of physicochemical and habitat stressors was weekly measured during the field experiment. Along the urbanization gradient, both taxonomic and functional diversity of shredders declined while OMB rates decayed. Shredders were absent and their contribution to OMB was null at the most urbanized sites. The B-EF relationship was interrupted through nutrient enrichment and physical habitat homogenization as a consequence of urbanization. These results demonstrate how species loss propagates to ecosystem functions in urbanized streams and how environmental stressors alter the B-EF relationship. Better land-use practices are crucial in Andean catchments to guarantee ecosystem services which are the result of a successful B-EF relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.