In this paper, we propose a Bayesian two-stage design for phase II clinical trials, which represents a predictive version of the single threshold design (STD) recently introduced by Tan and Machin. The STD two-stage sample sizes are determined specifying a minimum threshold for the posterior probability that the true response rate exceeds a pre-specified target value and assuming that the observed response rate is slightly higher than the target. Unlike the STD, we do not refer to a fixed experimental outcome, but take into account the uncertainty about future data. In both stages, the design aims to control the probability of getting a large posterior probability that the true response rate exceeds the target value. Such a probability is expressed in terms of prior predictive distributions of the data. The performance of the design is based on the distinction between analysis and design priors, recently introduced in the literature. The properties of the method are studied when all the design parameters vary.
Phase II clinical trials are typically designed as two-stage studies, in order to ensure early termination of the trial if the interim results show that the treatment is ineffective. Most of two-stage designs, developed under both a frequentist and a Bayesian framework, select the second stage sample size before observing the first stage data. This may cause some paradoxical situations during the practical carrying out of the trial. To avoid these potential problems, we suggest a Bayesian predictive strategy to derive an adaptive two-stage design, where the second stage sample size is not selected in advance, but depends on the first stage result. The criterion we propose is based on a modification of a Bayesian predictive design recently presented in the literature (see (Statist. Med. 2008; 27:1199-1224)). The distinction between analysis and design priors is essential for the practical implementation of the procedure: some guidelines for choosing these prior distributions are discussed and their impact on the required sample size is examined.
The identification of factors that increase the chances of a certain disease is one of the classical and central issues in epidemiology. In this context, a typical measure of the association between a disease and risk factor is the odds ratio. We deal with design problems that arise for Bayesian inference on the odds ratio in the analysis of case-control studies. We consider sample size determination and allocation criteria for both interval estimation and hypothesis testing. These criteria are then employed to determine the sample size and proportions of units to be assigned to cases and controls for planning a study on the association between the incidence of a non-Hodgkin's lymphoma and exposition to pesticides by eliciting prior information from a previous study
The rate of failure in phase III oncology trials is surprisingly high, partly owing to inadequate phase II studies. Recently, the use of randomized designs in phase II is being increasingly recommended, to avoid the limits of studies that use a historical control. We propose a two-arm two-stage design based on a Bayesian predictive approach. The idea is to ensure a large probability, expressed in terms of the prior predictive probability of the data, of obtaining a substantial posterior evidence in favour of the experimental treatment, under the assumption that it is actually more effective than the standard agent. This design is a randomized version of the two-stage design that has been proposed for single-arm phase II trials by Sambucini. We examine the main features of our novel design as all the parameters involved vary and compare our approach with Jung's minimax and optimal designs. An illustrative example is also provided online as a supplementary material to this article.
Single-arm studies are typically used in phase II of clinical trials, whose main objective is to determine whether a new treatment warrants further testing in a randomized phase III trial. The introduction of randomization in phase II, to avoid the limits of studies based on historical controls, is a critical issue widely debated in the recent literature. We use a Bayesian approach to compare single-arm and randomized studies, based on a binary response variable, in terms of their abilities of reaching the correct decision about the new treatment, both when it performs better than the standard one and when it is less effective. We evaluate how the historical control rate, the total sample size, and the elicitation of the prior distributions affect the decision about which study performs better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.