Spinal muscular atrophy (SMA) is a neurodegenerative disease associated with severe muscle atrophy and weakness in the limbs and trunk. We report interim efficacy and safety outcomes as of March 29, 2019 in 25 children with genetically diagnosed SMA who first received nusinersen in infancy while presymptomatic in the ongoing Phase 2, multisite, open-label, single-arm NURTURE trial. Fifteen children have two SMN2 copies and 10 have three SMN2 copies. At last visit, children were median (range) 34.8 [25.7-45.4] months of age and past the expected age of symptom onset for SMA Types I or II; all were alive and none required tracheostomy or permanent ventilation. Four (16%) participants with two SMN2 copies utilized respiratory support for ≥6 h/day for ≥7 consecutive days that was initiated during acute, reversible illnesses. All 25 participants achieved the ability to sit without support, 23/25 (92%) achieved walking with assistance, and 22/25 (88%) achieved walking independently. Eight infants had adverse events considered possibly related to nusinersen by the study investigators. These results, representing a median 2.9 years of follow up, emphasize the importance of proactive treatment with nusinersen immediately after establishing the genetic diagnosis of SMA in presymptomatic infants and emerging newborn screening efforts.
The phenotypes in myotonic dystrophy types 1 and 2 (DM1 and DM2) are similar, suggesting a shared pathophysiologic mechanism. DM1 is caused by expansion of a CTG repeat in the DMPK gene. Pathogenic effects of this mutation are likely to be mediated, at least in part, by the expanded CUG repeat in mutant mRNA. The mutant transcripts are retained in the nucleus in multiple discrete foci. We investigated the possibility that DM2 is also caused by expansion of a CTG repeat or related sequence. Analysis of DNA by repeat expansion detection methods, and RNA by ribonuclease protection, did not show an expanded CTG or CUG repeat in DM2. However, hybridization of muscle sections with fluorescence-labeled CAGrepeat oligonucleotides showed nuclear foci in DM2 similar to those seen in DM1. Nuclear foci were present in all patients with symptomatic DM1 (n = 9) or DM2 (n = 9) but not in any disease controls or healthy subjects (n = 23). The foci were not seen with CUG-or GUC-repeat probes. Foci in DM2 were distinguished from DM1 by lower stability of the probe-target duplex, suggesting that a sequence related to the DM1 CUG expansion accumulates in the DM2 nucleus. Muscleblind proteins, which interact with expanded CUG repeats in vitro, localized to the nuclear foci in both DM1 and DM2. These results support the idea that nuclear accumulation of mutant RNA is pathogenic in DM1, suggest that a similar disease process occurs in DM2, and point to a role for muscleblind in the pathogenesis of both disorders.
Periodic paralyses (PPs) are rare neuromuscular disorders caused by mutations in skeletal muscle sodium, calcium, and potassium channel genes. PPs include hypokalemic paralysis, hyperkalemic paralysis, and Andersen‐Tawil syndrome. Common features of PP include autosomal dominant inheritance, onset typically in the first or second decades, episodic attacks of flaccid weakness, which are often triggered by diet or rest after exercise. Diagnosis is based on the characteristic clinic presentation then confirmed by genetic testing. In the absence of an identified genetic mutation, documented low or high potassium levels during attacks or a decrement on long exercise testing support diagnosis. The treatment approach should include both management of acute attacks and prevention of attacks. Treatments include behavioral interventions directed at avoidance of triggers, modification of potassium levels, diuretics, and carbonic anhydrase inhibitors. Muscle Nerve 57: 522–530, 2018
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.