When using numerical models for hydraulic simulations of rivers, calibration is key to be able to reflect accurately the interaction of water flow in the channel and to make it resemble what is observed. In this study, a calibrated two-dimensional hydraulic model was created for two control paths located in the Ahogados and Tempisquito rivers. Paths were analyzed morphologically from a grain-size analysis and the different roughness coefficients were calculated through a numerical model using the empirical equations known as “Strickler-type” as a first approximation and later adjustment by a factor obtained from comparing the observed and simulated data. It was identified that both paths are mountain rivers with beds of coarse material, mostly boulders (cobble gravel) and pebble gravel. Calibrated roughness coefficients were determined with an error percentage between the area of the pattern formed by the simulated and observed of less than 10%, and new empirical equations adjusted to the characteristics of the riverbeds were formulated.
El Plan Nacional para el Mejoramiento de la Productividad y la Sostenibilidad del Sector Agrícola pretende ser aplicado de forma escalonada a todo el país, bajo el nombre de AGRINNOVACION 4.0 para impulsar la recuperación económica y la generación de empleo posterior a la pandemia del COVID-19. El objetivo del presente trabajo es analizar información geoespacial de los productores del programa AGRINNOVACIÓN 4.0 utilizando la plataforma gratuita Google Earth Engine (GEE), con el fin de establecer la base del catastro digital agrícola de la Zona Norte de Cartago y contar con un sistema de información geográfica para la aplicación de tecnologías de alta precisión, como base del modelo de identificación de zonas productivas con cultivos de ciclo corto desarrollado en la Zona Norte de Cartago. Se generó una metodología de adquisición de datos utilizando sistemas de información geográfica y técnicas de aprendizaje automático (Random Forest), con buenos resultados de ajuste. Para la zona en estudio, es imperante que se reduzca la información afectada por nubosidad para hacer la clasificación de tierras de uso hortícola lo mas precisa posible. La herramienta es replicable y constituye un apoyo en el éxito del plan para las etapas posteriores.
Climate change is a variation in the normal behavior of the climate. These variations and their effects will be seen in the coming years, the most imminent being anomalous fluctuations in atmospheric temperature and precipitation. This scenario is counterproductive for agricultural production. This study evaluated the effect of climate change on oil palm production for conditions in the Central Pacific of Costa Rica, in three simulation scenarios: the baseline between the years 2000 and 2019, a first climate change scenario from 2040 to 2059 (CCS1), and a second one from 2080 to 2099 (CCS2), using the modeling framework APSIM, and the necessary water requirements were established as an adaptive measure for the crop with the irrigation module. A decrease in annual precipitation of 5.55% and 7.86% and an increase in the average temperature of 1.73 °C and 3.31 °C were identified, generating a decrease in production yields of 7.86% and 37.86%, concerning the Baseline, in CCS1 and CCS2, respectively. Irrigation made it possible to adapt the available water conditions in the soil to maintain the baseline yields of the oil palm crop for the proposed climate change scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.