Background. Macromycete cultivation methods development will contribute to the production of biotechnological products based on fungus. Determination of the main factors affecting medicinal macromycetes’ life processes allows to control biosynthetic activity of a fungal organism and obtain biotechnological products based on it. Objective. Screening of Fomitopsis officinalis strains promising for biotechnological use, and determining of physico-chemical factors that affect the cultures life processes. Methods. The objects of the study were three pure cultures of F. officinalis (IBK-2497, IBK-2498, IBK-5004). The influence of the acidity of the environment on the growth of mycelium, the needs of the cultures in the sources of carbon and nitrogen nutrition were determined. The following carbon sources were used: monosaccharides (glucose, xylose), disaccharides (sucrose, lactose) and trisaccharides (raffinose), polysaccharides (starch); nitrogen sources: KNO3, (NH4)2HPO4, asparagine, peptone. Dynamics of the culture growth were determined under the conditions of deep cultivation, on a liquid nutrient medium of glucose-peptone-yeast extract (GPA), g/l: glucose – 30.0; peptone – 3.5; yeast extract – 2.0; KH2PO4 – 1.0; K2HPO4 – 1.0; MgSO4×7H2O – 0.25. Results. The pH range between 5.5 and 6.0 was the most favorable for active growth of all studied strains of F. officinalis. The best carbon sources for growth were glucose and starch; peptone and asparagine were the best source of nitrogen. Nutrient media with xylose, lactose and nitrate nitrogen were least suitable for growth. Analysis of the strains growth dynamics on the GPA medium showed that the largest mass of mycelium (up to 11.54 ± 0.2 g/l) was produced by culture F. officinalis IBK-5004 on the 10-th day of cultivation. Cultures F. officinalis IBK-2497, IBK-2498 grew slower, and the mycelial mass was 10.33 ± 0.2 and 9.68 ± 0.3 g/l on the 14-th day of cultivation. Conclusions. Based on the obtained data, the F. officinalis IBK-5004 strain was selected. It can be considered a promising mycelial mass producer based on the set of characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.