We describe the preparation, biophysical characterization, and receptor-mediated cellular internalization of biotinylated lipid particles (BLPs) loaded on the surface and internally with two distinct (colors) of quantum dot (QD) probes. BLPs were formulated with 1.4 and 2.7 mol % PEG-lipids containing either a fusogenic or pH-sensitive lipid to promote bilayer destabilization of endosomal membranes and favor QD cytoplasmic release. The amount of PEG was chosen to provide steric stabilization of the final construct. BLPs were loaded with a red-emitting QD(655) and surface coated with a green-emitting QD(525) conjugated to the epidermal growth factor (EGF) ligand in order to target the epidermal growth factor receptor (EGFR). The targeted and QD labeled BLPs showed strong and selective binding to EGFR-expressing tumor cell line and subsequent internalization. The dual-color QD labeling strategy and colocalization analysis allow prolonged live cell imaging of BLPs and loaded cargo independently, using a single excitation wavelength and simultaneous detection of both QDs. The chemistry of bioconjugation for the EGF ligand, the QDs, and the BLPs in a single lipid particle, involves only biotin-streptavidin interaction without requiring further purification from free EGF-QDs preformed complexes. Coupled with an encapsulated drug, the targeted and QD-labeled BLPs could provide imaging and drug delivery in a single multifunctional carrier.
Transplanted hepatocytes integrate, survive, and express their specific functions in the liver parenchyma. The aim of this study was to determine whether a large number of hepatocytes could move from the spleen to the liver when the cells are injected together with sodium nitroprusside, and if the improved hepatocyte migration may be related with portal vein dilatation. Wistar rats were transplanted in the spleen with fluorescent-labeled hepatocytes alone or together with sodium nitroprusside. At 1, 3, 6, and 24 h after the transplant, the liver from recipient animals was removed and morphometric analyses were performed. Portal and arterial pressures were also measured immediately after intrasplenic injection of a solution of sodium nitroprusside, hepatocytes alone, or hepatocytes plus sodium nitroprusside. Intrasplenically injected sodium nitroprusside produced a transient drop in arterial pressure and a sustained reduction in portal pressure. During hepatocyte transplantation it increased the number of transplanted cells migrating to the liver after 3 h. Sodium nitroprusside simultaneously injected with hepatocytes in the spleen allowed more cells to migrate into the liver of the host animal without risk in animal survival.
Self-assembling supramolecular complexes are of great interest for bottom-up research like nanotechnology. DNA is an inexpensive building block with sequence-specific self-assembling capabilities through Watson-Crick and/or Hoogsteen base pairing and could be used for applications in surface chemistry, material science, nanomechanics, nanoelectronics, nanorobotics, and of course in biology. The starting point is usually single-stranded DNA, which is rather easily accessible for base pairing and duplex formation. When long stretches of double-stranded DNA are desirable, serving either as genetic codes or electrical wires, bacterial expansion of plasmids is an inexpensive approach with scale-up properties. Here, we present a method for using double-stranded DNA of any sequence for generating simple structures, such as junctions and DNA lattices. It is known that supercoiled plasmids are strand-invaded by certain DNA analogs. Here we add to the complexity by using "Self-assembling UNiversal (SUN) anchors" formed by DNA analog oligonucleotides, synthesized with an extension, a "sticky-end" that can be used for further base pairing with single-stranded DNA. We show here how the same set of SUN anchors can be utilized for gene therapy, plasmid purification, junction for lattices, and plasmid dimerization through Watson-Crick base pairing. Using atomic force microscopy, it has been possible to characterize and quantify individual components of such supra-molecular complexes.
Background: E-cadherin is the major adhesion receptor in epithelial adherens junctions (AJs). On established epidermis, E-cadherin performs fine-tuned cell-cell contact remodeling to maintain tissue integrity, which is characterized by modulation of cell shape, size and packing density. In zebrafish, the organization and distribution of E-cadherin in AJs during embryonic epidermis development remain scarcely described. Methods: Combining classical immunofluorescence, deconvolution microscopy and 3D-segmentation of AJs in epithelial cells, a quantitative approach was implemented to assess the spatial and temporal distribution of E-cadherin across zebrafish epidermis between 24 and 72 hpf. Results: increasing levels of E-cadh protein parallel higher cell density and the appearance of hexagonal cells in the enveloping layer (EVL) as well as the establishments of new cell-cell contacts in the epidermal basal layer (EBL), being significantly between 31 and 48 hpf. Conclusions: Increasing levels of E-cadherin in AJs correlates with extensive changes in cell morphology towards hexagonal packing during the epidermis morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.