Given the matrices A, B, C, D and E of conforming dimensions, we consider the linear matrix equation AXE + DXB = C in the unknown matrix X. Our aim is to provide an overview of the major algorithmic developments that have taken place in the past few decades in the numerical solution of this and of related problems, which are becoming a reliable tool in the numerical formulation of advanced application models.
A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.
Abstract. In this paper we propose a new projection method to solve large-scale continuous-time Lyapunov matrix equations. The new method projects the problem onto a much smaller approximation space, generated as a combination of Krylov subspaces in A and A −1 . The reduced problem is then solved by means of a direct Lyapunov scheme based on matrix factorizations. The reported numerical results show the competitiveness of the new method, compared to a state-of-the-art approach based on the factorized Alternating Direction Implicit (ADI) iteration.
Abstract. We provide a general framework for the understanding of inexact Krylov subspace methods for the solution of symmetric and nonsymmetric linear systems of equations, as well as for certain eigenvalue calculations. This framework allows us to explain the empirical results reported in a series of CERFACS technical reports by Bouras, Frayssé, and Giraud in 2000. Furthermore, assuming exact arithmetic, our analysis can be used to produce computable criteria to bound the inexactness of the matrix-vector multiplication in such a way as to maintain the convergence of the Krylov subspace method. The theory developed is applied to several problems including the solution of Schur complement systems, linear systems which depend on a parameter, and eigenvalue problems. Numerical experiments for some of these scientific applications are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.