The article discusses the design of the Delta robot, which is part of a multirobotic system for aliquoting biological fluid. The purpose of the article is to obtain a dynamic model of the Delta manipulator using 3D modeling, which will allow studying the kinematic and dynamic characteristics of the manipulator for the specified parameters. A computer-aided design (CAD) system is used for modeling. The article presents an analytical calculation of the kinematic and dynamic parameters of the Delta manipulator in the RS structure, a solution to the inverse problem is presented. The process of creating a digital calculation model in the NX Nasrtan system is described. The preliminary calculation of kinematic and dynamic parameters made it possible to set parameters in the NX Nastran system to ensure the rotation of the drive shafts of the engines in accordance with the specified trajectory of the output link. For all parts of the manipulator, the center of mass is determined and the material is assigned. Motion simulation was carried out and dependences of changes in speeds, accelerations and movements of the manipulator links were obtained to implement the required trajectory of the mobile platform. This calculation allows you to build the trajectory of the output link with a given speed, setting the rotation of the drive links of the calculated model taking into account the forces of inertia.
This article discusses and analyzes mechanisms based on the principles of parallel kinematics, designed to perform various technological actions, with the movement of the executive body along complex spatial trajectories. Mechanisms with parallel structures have wide possibilities for solving various problems of application of equipment and technologies. Promising are the tasks associated with the use of mobile bases in various simulators to gain skills in controlling equipment (aircraft, cars, specialized military equipment). To conduct research on kinematic and dynamic characteristics, a digital layout of the platform has been developed – a parameterized 3D model in a CAD system. The platform represents a system with six degrees of mobility, which are implemented on the basis of a mechanism with a parallel structure. A description of a dynamic simulation model with six degrees of mobility developed using the MSC Adams software environment is given. The model is intended for research at the stage of design work in the development of simulators of various vehicles. The developed dynamic model was tested in order to implement a methodology for conducting research on the kinematic and dynamic characteristics of the platform based on simulation modeling. The results determining the capabilities of the model for determining the dynamic and force parameters in individual elements of the platform at the specified geometric parameters of the platform design are presented. The methodology of studying the digital layout of the platform by simulation modeling consisted in the execution of the accepted trajectories by the model, taking into account the technical characteristics of the actuators. At the same time, certain dynamic indicators were recorded and processed. As a result, graphs of changes in velocities and accelerations of the center of mass, as well as force characteristics (the sum of forces applied to the body in the hinge) when performing the corresponding trajectories are constructed.
This paper presents a detailed design of a skid-steering mobile platform with four wheels, along with a Cartesian serial (PPP) manipulator. The aim of this design is to enable the platform to perform various tasks in the agricultural process. The parallel manipulator designed can handle heavy materials in the agricultural field. An experimental robotic harvesting scenario was conducted using parallel manipulator-based end-effectors to handle heavy fruits such as watermelon or muskmelon. The conceptual and component design of the different models was carried out using the Solidworks modeling package. Design specifications and parametric values were utilized during the manufacturing stage. The mobile manipulator was simulated on undulating terrain profiles using ADAMS software. The simulation was analyzed for a duration of 15 s, and graphs depicting the distance, velocity, and acceleration were evaluated over time. Proportional derivative control and proportional derivative-like conventional sliding surface control were applied to the model, and the results were analyzed to assess the error in relation to the input and desired variables. Additionally, a structural analysis was performed to ensure minimal deformation and the highest safety factor for the wheel shaft and L bracket thickness. Throughout the fabrication and prototype development, calibration tests were conducted at various X-, Y-, and Z-axis frame mounting stages. The objective was to minimize the lateral and longitudinal deviation between the parallel linear motion (LM) rails. Once the fabrication and prototype construction was completed, field testing was carried out. All mechanical movements in the lateral and longitudinal directions functioned according to the desired commands given by the Arduino Mega, controlled via a six-channel radio frequency (RF) controller. In the context of agriculture, the grippers utilizing parallel mechanisms were also subjected to testing, demonstrating their ability to handle sizable cylindrical and spherical fruits or vegetables, as well as other relevant objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.