Dysfunctional coping styles are involved in the development, persistence, and relapse of psychiatric diseases. Passive coping with stress challenges (helplessness) is most commonly used in animal models of dysfunctional coping, although active coping strategies are associated with generalized anxiety disorder, social anxiety disorder, panic, and phobias as well as obsessive-compulsive and post-traumatic stress disorder. This paper analyzes the development of dysfunctional active coping strategies of mice of the helplessness–resistant DBA/2J (D2) inbred strain, submitted to temporary reduction in food availability in an uncontrollable and unavoidable condition. The results indicate that food-restricted D2 mice developed a stereotyped form of food anticipatory activity and dysfunctional reactive coping in novel aversive contexts and acquired inflexible and perseverant escape strategies in novel stressful situations. The evaluation of FosB/DeltaFosB immunostaining in different brain areas of food-restricted D2 mice revealed a pattern of expression typically associated with behavioral sensitization to addictive drugs and compulsivity. These results support the conclusion that an active coping style represents an endophenotype of mental disturbances characterized by perseverant and inflexible behavior.
Individual variability in the response to pharmacological therapies is a major problem in the treatment of psychiatric disorders. Comparative studies of phenotypes expressed by mice of the C57BL/6J (C57) and DBA/2J (DBA) inbred strains can help identify neurobiological determinants of this variability at preclinical levels. We have recently demonstrated that whereas young adult mice of both strains develop sign-tracking in a Pavlovian Conditioned Approach (PCA), a trait associated with dysfunctional behavior in rat models, in full adult C57 mice acquisition of this phenotype is inhibited by pre-frontal cortical (PFC) serotonin (5HT) transmission. These findings suggest a different role of 5HT transmission on sign-tracking development in mice of the two genotypes. In the present experiments, we tested the effects of the 5-HT synthesis booster 5-hydroxytryptophan (5-HTP) and of the selective 5HT reuptake inhibitor (SSRI) fluoxetine on the development and expression of sign-tracking in young adult mice from both inbred strains. In mice of the C57 strain, administration of 5-HTP before each training session blocked the training-induced shift to positive PCA scores which indicates the development of sign-tracking, whereas the same treatment was ineffective in mice of DBA strain. On the other hand, a single administration of fluoxetine was ineffective in unhandled saline- and 5-HTP-treated C57 mice, whereas it enhanced the expression of positive PCA scores by mice of DBA strain treated with 5-HTP during training. These findings confirm the strain-specific inhibitory role of PFC 5-HT transmission on sign-tracking development by mice of the C57 strain and support the hypothesis that different genotype-specific neurobiological substrates of dysfunctional phenotypes contribute to variable effects of pharmacotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.