Extracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH. Release of miR-424 in small EVs was enhanced in cell lines (LNCaPabl), transgenic mice (Pb-Cre4;Ptenflox/flox;Rosa26ERG/ERG) and patient-derived xenograft (PDX) models of aggressive disease. EVs containing miR-424 promoted stem-like traits and tumor-initiating properties in normal prostate epithelial cells while enhanced tumorigenesis in transformed prostate epithelial cells. Intravenous administration of miR-424 positive EVs to mice, mimicking blood circulation, promoted miR-424 transfer and tumor growth in xenograft models. Circulating miR-424 positive EVs from patients with aggressive primary and metastatic tumors induced stem-like features when supplemented to prostate epithelial cells. This study establishes that EVs-mediated transfer of miR-424 across heterogeneous cell populations is an important mechanism of tumor self-sustenance, disease recurrence and progression. These findings might indicate novel approaches for the management and therapy of prostate cancer.
CDK9 is a serine/threonine kinase belonging to the subclass of the transcription associated CDKs. CDK9 complexes with cyclin T and cyclin K, the positive transcription elongation factor b (P-TEFb), and phosphorylates Serine 2 of RNA polymerase II (pSer2 RNAPII) to activate transcription. Consequently, targeting CDK9 could effectively interfere with epigenetic and transcriptional reprogramming and prevent disease progression and treatment resistance in human cancers. Androgen receptor (AR)-dependence in prostate cancer is linked to CDK9 function. CDK9 stabilizes AR-associated proteins, and pharmacological inhibition of CDK9 can inhibit AR, AR variants, and their downstream transcription programs. We evaluated the novel CDK9 inhibitor, PRT2527, in prostate cancer models to evaluate its effects on cell proliferation, stem-like tumor cells, and tumor growth. PRT2527 is a potent inhibitor of CDK9/CyclinT1 complex, and when evaluated at concentration 200 times the biochemical IC50, PRT2527 was highly selective for CDK9 inhibition. We verified in biochemical assays the ability of PRT2527 to suppress pSer2 RNAPII and reduce expression of c-Myc, a common target of CDK9, in a concentration-dependent manner in multiple human prostate cancer cell lines. PRT2527 also inhibited c-Myc-dependent transcription in vitro in luciferase reporter assays. Furthermore, RNA sequencing showed altered expression of several genes with significant enrichment of c-Myc and E2F targets and RNAPII dependent transcription among downregulated genes in PRT2527-treated VCaP cells. In vitro, PRT2527 inhibited the proliferation of androgen-dependent and androgen-independent prostate cancer cell lines (IC50, ≤50 nM). PRT2527 was highly effective (IC50, ≤10 nM) in tumor-spheroid assays in blocking the growth of stem-like tumor cells and significantly suppressed the in vitro growth of tumor organoids from both human cell lines and patient-derived xenografts (PDXs). In mice, PRT2527 IV administration reduced pSer2 RNAPII in tumor xenografts and c-Myc-dependent transcriptional activity in a DU145 luminescence reporter model. PRT2527 administration in mice significantly reduced growth of PDX LuCaP 35 (castration-sensitive, adenocarcinoma) and LuCaP 145.2 (castration-resistant, neuroendocrine) along with the fraction of tumor-initiating stem-like cells in ex vivo assays. PRT2527 reduced pSer2 RNAPII in both PDXs, whereas c-Myc decreased in LuCaP 35 and Sox2 in LuCaP 145.2, relative to basal expression levels. Collectively, our data demonstrate that PRT2527 has potent pharmacodynamic and antitumor activity in multiple models of castration-sensitive and castration-resistant prostate cancer. PRT2527 is advancing into phase 1 studies in solid tumors. Citation Format: Elisa Federici, Gianluca Civenni, Aleksandra Kokanovic, Giada Sandrini, Luca Guarrera, Simone Mosole, Alessia Cacciatore, Valeria Uboldi, Manuel Lessi, Giovanni Papa, Domenico Albino, Elisa Storelli, Jessica Merulla, Andrea Rinaldi, Marco Bolis, Yang Zhang, Kris Vaddi, Peggy Scherle, Bruce Ruggeri, Giuseppina M. Carbone, Carlo V. Catapano. PRT2527, a novel highly selective cyclin-dependent kinase 9 (CDK9) inhibitor, is active in preclinical models of prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5471.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.