Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers’ tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers’ preferences.
The buffalo dairy sector is extending its boundaries to include new buffalo cheese productions beyond mozzarella, overcoming some barriers that make cheeses expensive and unsustainable. This study aimed to evaluate the effects of both the inclusion of green feed in the diet of Italian Mediterranean buffaloes and an innovative ripening system on buffalo cheese quality, providing solutions capable of guaranteeing the production of nutritionally competitive and sustainable products. For this purpose, chemical, rheological, and microbiological analyses were carried out on cheeses. Buffaloes were fed with or without the inclusion of green forage. Their milk was used to produce dry ricotta and semi-hard cheeses, ripened according to both respective traditional (MT) and innovative methods (MI); these are based on automatic adjustments of climatic recipe guided by the continuous control of pH. Green feed enhances the nutritional profile of the final products (high content of MUFAs and PUFAs). As far as the ripening method is concerned, to our knowledge, this is the first study that tests aging chambers, commonly used for meat, for the maturing of buffalo cheeses. Results pointed out the MI validity also in this field of application, as it shortens the ripening period without negatively compromising any of desirable physicochemical properties and the safety and hygiene of the final products. Conclusively, this research highlights the benefits of diets rich in green forage on productions and provides support for the ripening optimization of buffalo semi-hard cheeses.
The cooling applied during the firming and brining processes represents an important production step in mozzarella cheese making. The temperature fluctuations of the cooling water can negatively affect the hygiene, composition, and quality of mozzarella. Some sustainable cooling systems can minimize this problem by using hot process fluids as heat sources to generate refrigerated energy. This study aimed to evaluate the effects of a new cooling system equipped with a water-ammonia absorption chiller (MA) on the characteristics of buffalo mozzarella through a comparative study with products cooled by using a traditional ice water chiller (MT). The buffalo mozzarella cheese manufacture was monitored, and the samples were analyzed for chemical, nutritional, microbiological, and sensory characteristics. The MT samples showed an overall weight loss of 7.4% compared to an average of 2.8% for the MA samples. The MT samples were characterized by greater sapidity than the MA ones, which instead showed a higher moisture content that increased juiciness. The microbiological analysis showed a lower concentration of mesophilic bacterial load in the MA samples than the MT [difference of 1 Log (CFU/g)], probably due to the low and constant temperatures that reduced the permanence time of the mozzarella in the vats (firming and brining). This study represents a preliminary positive evaluation of the use of this sustainable cooling system for mozzarella cheese, which is useful for dairy plants with an annual cheese production volume sufficient to justify the operating cost of the plant and the annual energy cost.
Fresh fishery products are highly perishable foods mainly due to their high-water content and high level of pH which act as promoters of spoilage processes. In these matrices, the deterioration phenomena are the result of the action of oxidative, and enzymatic processes due in part to the presence of specific microorganisms. Indeed, the microbial communities responsible for spoilage are a small fraction of the flora detectable in the fish and are known as specific spoilage organisms (SSOs). In the last decades, the scientific community has worked to achieve the ambitious goal of reducing the impact of microbial deterioration on food losses through innovative solutions, including antimicrobial packaging. The goal of this study was to evaluate the efficacy of an active polypropylene (PP)- based packaging functionalized with the antimicrobial peptide 1018K6 to extend the shelf life of dolphinfish burgers (Coryphaena hippurus) by evaluating its effect on sensorial and microbiological profile. The microbiological results showed an evident antimicrobial activity of the active packaging against hygiene indicator microorganisms and SSOs, recording a reduction of about 1 Log (CFU/g) of their concentrations compared to those of the control groups. Furthermore, a significant influence of functionalized packaging on the organoleptic characteristics was noted, accentuating the differences in freshness between the two experimental groups. This work confirmed the hypothesis of considering antimicrobial packaging as a potential tool capable of slowing down surface microbial replication and, therefore, extending the shelf-life and improving the health and hygiene aspect of fresh fish products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.