A high proportion of purebred Hampshire pigs carries the dominant RN- mutation, which causes high glycogen content in skeletal muscle. The mutation has beneficial effects on meat content but detrimental effects on processing yield. Here, it is shown that the mutation is a nonconservative substitution (R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4) cause defects in glucose metabolism, including glycogen storage. Further analysis of the PRKAG3 signaling pathway may provide insights into muscle physiology as well as the pathogenesis of noninsulin-dependent diabetes mellitus in humans, a metabolic disorder associated with impaired glycogen synthesis.
-AMP-activated protein kinase (AMPK) is a meta-bolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific ␥3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK ␥3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse ␥3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK ␥3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK ␥3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK ␥3 isoform as a therapeutic target for prevention and treatment of insulin resistance.AMPK 1 is a heterotrimeric serine/threonine protein kinase composed of a catalytic ␣ subunit and non-catalytic  and ␥ subunits (1, 2). The mammalian genome contains seven AMPK genes encoding two ␣, two , and three ␥ isoforms. AMPK signaling is elicited by cellular stresses that deplete ATP (and consequently elevate AMP) by either inhibiting ATP production (e.g. hypoxia) or accelerating ATP consumption (e.g. muscle contraction). AMPK is activated allosterically by AMP and through phosphorylation of Thr 172 in the ␣ subunit by an upstream AMPK kinase, the tumor-suppressor protein kinase LKB1 (3, 4). AMPK is likely to be important for diverse functions in many cell types, but particular interest has been focused on elucidating the role of AMPK in the regulation of lipid and carbohydrate metabolism in skeletal muscle (5-10). AMPK activity has been correlated with an increase in glucose uptake and fatty acid oxidation and an inhibition of glycogen synthase activity and fatty acid synthesis. Exercise, as well as skeletal muscle contractions in vitro, leads to AMPK activation. Pharmacological activation of AMPK also can be achieved using 5-aminoimidazole-4-carboxamide-1--D-ribonucleoside (AICAR). Once taken up by the cell, AICAR is phosphorylated to 5-aminoimidazole-4-carboxamide riboside monophosphate (ZMP) and mimics effects of AMP on AMPK (1, 2). AMPK function is closely related to glycogen storage. AMPK phosphorylates glycogen synthase in vitro (11) and co-immunoprecipitates with glycogen synthase and glycogen phosphorylase from skeletal muscle (12). Mutations of the ␥3 or ␥2 subunit, respectively, affect glycogen storage in pigs (13, 14) or glycogen storage associated with cardiac abnormalities in humans (15). The recent identification of a glycogen-binding domain in the AMPK 1 subunit provides a molecular relationship between AMPK and glycogen (16,17). The formation of heterotrimers appears to be...
Nutritional programming, taking place in utero or early after birth, is closely linked with metabolic and appetite disorders in adulthood. Following the hypothesis that nutritional programming impacts hypothalamic neuronal organization, we report on discrepancies of multiple molecular and cellular early events that take place in the hypothalamus of rats submitted to intrauterine growth restriction (IUGR). Expression screening performed on hypothalami from IUGR rats at birth and at postnatal d 12 identified changes in gene expression of neurodevelopmental process (cell differentiation and cytoskeleton organization). Additionally, a slight reduction of agouti-related protein and a strong reduction of alpha-MSH-immunoreactive efferent fibers were demonstrated in the paraventricular nucleus of IUGR rats. Rapid catch-up growth of IUGR rats, 5 d after birth, had a positive effect on neurodevelopmental factors and on neuronal projections emanating from the arcuate nucleus. The molecular and cellular anomalies detected in IUGR rats can be related to the reduced and delayed plasma leptin surge from d 0-16 when compared with control and IUGR rats with catch-up growth. However, the ability of leptin to activate intracellular signaling in arcuate nucleus neurons was not reduced in IUGR rats. Other mechanism such as epigenetic regulation of the major appetite-regulating neuropeptides genes was analyzed in parallel with their mRNA expression during postnatal development. This study reveals the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.