Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.
In this study, we assessed the change in skin microbiota composition, relative abundance, and diversity with skin physiology disruption induced by SLS patch. Healthy women declaring to have a reactive skin were submitted to a 0.5% aqueous sodium lauryl sulfate solution application under occlusive patch condition for 24 h. Skin properties were characterized by tewametry, corneometry, and colorimetry and bacterial diversity was assessed by 16S rRNA sequencing. Analysis before and one day after SLS patch removal revealed an increase of skin redness and a decrease of stratum corneum hydration and skin barrier function. The relative abundance of taxa containing potential pathogens increase (Firmicutes: Staphylococcaceae; Proteobacteria: Enterobacteriaceae, Pantoea) while some of the most occurring Actinobacteria with valuable skin protection and repair capacities decreased (Micrococcus, Kocuria, and Corynebacterium). We observed an impaired skin barrier function and dehydration induced by SLS patch disturb the subtle balance of skin microbiota towards skin bacterial community dysbiosis. This study provides new insights on the skin bacterial composition and skin physiology simultaneously impaired by a SLS patch.
The cover image is based on the Original Article Development of new 3D human ex vivo models to study sebaceous gland lipid metabolism and modulations by Anne‐France de Bengy et al., https://doi.org/10.1111/cpr.12524.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.