Non-conventional major histocompatibility complex class I molecules are involved in a variety of physiological functions, most at the periphery of the immune system per se. Zinc-a 2 -glycoprotein (ZAG), the sole soluble member of this superfamily has been implicated in cachexia, a poorly understood yet life-threatening, severe wasting syndrome. To further ascertain the role of ZAG in lipid metabolism and perhaps the immune system, we inactivated both ZAG alleles by gene targeting in mice. Subjecting these ZAG deficient animals to standard or lipid rich food regimens led to increased body weight in comparison to identically treated wild-type mice. This phenotype appeared to correlate with a significant decrease in adipocytic lipolysis that could not be rescued by several pharmacological agents including b 3 -adrenoreceptor agonists. Furthermore, in contrast to previously reported data, ZAG was found to be ubiquitously and constitutively expressed, with an especially high level in the mouse liver. No overt immunological phenotype was identified in these animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.