Volcanic eruptions are foundational events that shape the Earth's surface and provide a window into deep Earth processes. How the primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly understood. We document an on-going magmatic event offshore Mayotte Island (North Mozambique channel), associated with large surface displacements, very low frequency earthquakes and exceptionally deep (25-50 km) seismicity swarms. We present data from the May 2019 MAYOBS1 cruise, which reveal that this event gave birth to a 820m tall, ~ 5 km 3 deepsea volcanic edifice. This is the largest active submarine eruption ever documented. The data indicate that deep magma reservoirs were rapidly drained through dykes that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated beneath an ancient caldera structure.
The objective of the Naudur cruise (December 1993) of the submersible Nautile was to study the interaction among magmatic, tectonic, and hydrothermal processes at a very fast spreading mid‐ocean ridge axis. Twenty‐three dives were completed, both along and across the axis, in four areas located between 17°10′ and 18°45′S on the East Pacific Rise. Rock, sulfides, water, and biological samples have been collected along each of the segments. Two main types of segments have been distinguished, characterized either by the predominance of present‐day volcanic activity or by predominant tectonic activity. Linked to both types of activity, 69 hydrothermal sites have been discovered and sampled. They comprise four types, interpreted as successive evolutionary stages. The first are shimmering water sites which occur immediately after the formation of lava lakes and are characterized by large surface area and poorly developed associated fauna. The second, in areas dominated by recent volcanic activity, have waters venting directly from lava fissures and more focused discharge areas through black smoker chimneys. The third stage is represented by more mature hydrothermal vents and deposits, along the faults bounding the eastern side of the axial graben in tectonic‐dominated areas. The associated fauna is well developed. The fourth stage corresponds to the reactivation of volcanic activity with lava flows, young black smokers, and diffuse venting associated with the faults bounding the axial graben. Fluids collected range from 200° to 340°C and show a wide variability in chemical and gas composition. Within each of the explored areas, evidence of recent volcanic activity has been observed.
Volcanic eruptions are foundational events that shape the Earth's surface and provide a window into deep Earth processes. How the primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly understood. We document an ongoing magmatic event offshore Mayotte Island (North Mozambique channel), associated with large surface displacements, very low frequency earthquakes and exceptionally deep (25-50 km) seismicity swarms. We present data from the May 2019 MAYOBS1 cruise, which reveal that this event gave birth to a 820m tall, ~ 5 km 3 deepsea volcanic edifice. This is the largest active submarine eruption ever documented. The data indicate that deep magma reservoirs were rapidly drained through dykes that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated beneath an ancient caldera structure.
Eruptive activity shapes volcanic edifices. The formation of broad caldera depressions is often associated with major collapse events, emplacing conspicuous pyroclastic deposits. However, caldera subsidence may also proceed silently by magma withdrawal at depth, more difficult to detect. Ambrym, a basaltic volcanic island, hosts a 12-km wide caldera and several intensely-degassing lava lakes confined to intra-caldera cones. Using satellite remote sensing of deformation, gas emissions and thermal anomalies, combined with seismicity and ground observations, we show that in December 2018 an intra-caldera eruption at Ambrym preceded normal faulting with >2 m of associated uplift along the eastern rift zone and 2.5 m of caldera-wide subsidence. Deformation was caused by lateral migration of >0.4 cubic kilometers of magma into the rift zone, extinguishing the lava lakes, and feeding a submarine eruption in the rift edge. Recurring rifting episodes, favored by stress induced by the D’Entrecasteaux Ridge collision against the New Hebrides arc, lead to progressive subsidence of Ambrym’s caldera and concurrent draining of the lava lakes. Although counterintuitive, convergent margin systems can induce rift zone volcanism and subsequent caldera subsidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.