The structure of IP-10 was solved by NMR spectroscopy and represents the first structure from the class of agonists toward the receptor CXCR3. CXCR3 binding chemokines are unique in their ability to bind receptors from both the CC and CXC classes of chemokine receptors. An unusual structural feature of IP-10 was identified that may provide the basis for the ability of IP-10 to bind both CXCR3 and CCR3. The surface of IP-10 that interacts with the N-terminus of CXCR3 was defined by monitoring changes in the NMR spectrum of IP-10 upon addition of a CXCR3 N-terminal peptide. These studies indicated that the interaction involves a hydrophobic cleft, formed by the N-loop and 40s-loop region of IP-10, similar to the interaction surface observed for other chemokines such as IL-8. An additional region of interaction was observed that consists of a hydrophobic cleft formed by the N-terminus of IP-10 and 30s-loop of IP-10.
Surfactant protein B (SP-B) is essential for normal lung surfactant function, which is in itself essential to life. However, the molecular basis for SP-B's activity is not understood and a high-resolution structure for SP-B has not been determined. Mini-B is a 34-residue peptide with internal disulfide linkages that is composed of the N- and C-terminal helical regions of SP-B. It has been shown to retain similar activity to full-length SP-B in certain in vitro and in vivo studies. We have used solution NMR to determine the structure of Mini-B in the presence of micelles composed of the anionic detergent sodium dodecyl sulfate (SDS). Under these conditions, Mini-B forms two alpha-helices connected by an unstructured loop. Mini-B possesses a strikingly amphipathic surface with a large positively charged patch on one face of the peptide and a large hydrophobic patch on the opposite face. A tryptophan side chain extends outward from the peptide in a position to interact with lipids at the polar/apolar interface. Interhelix interactions are stabilized by both disulfide bonds and by interleaving of hydrophobic side chains from the two helices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.