SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.
The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting.
Renshaw cells provide a convenient model to study spinal circuit development during the emergence of motor behaviors with the goal of capturing principles of interneuron specification and circuit construction. This work is facilitated by a long history of research that generated essential knowledge about the characteristics that define Renshaw cells and the recurrent inhibitory circuit they form with motoneurons. In this review, we summarize recent data on the specification of Renshaw cells and their connections. A major insight from these studies is that the basic Renshaw cell phenotype is specified before circuit assembly, a result of their early neurogenesis and migration. Connectivity is later added, constrained by their placement in the spinal cord. Finally, different rates of synapse proliferation alter the relative weights of different inputs on postnatal Renshaw cells. Based on this work some general principles on the integration of spinal interneurons in developing motor circuits are derived.
The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptThe development of spinal cord local interneuronal circuits is currently poorly understood. Recent work has defined a relatively small number of cardinal interneurons in embryo that generates the much larger diversity of adult interneurons (Goulding, 2009). In the ventral horn just four embryonic subgroups (V0, V1, V2, V3) generate most adult premotor interneurons by diversification mechanisms that are currently largely unknown. Each group displays common properties that generally include origins from one type of progenitor cell (p0, p1, p2, p3), the direction taken by the primary axon, their cell migration and final location in the ventral horn with relation to motor pools, and their neurotransmitter phenotype. For example, V1 interneurons have common origins in the p1 progenitor area and are characterized by expression of the engrailed-1 (En-1) transcription factor. They migrate ventrolaterally, positioning themselves adjacent to motor pools, extend ascending axons that target ipsilateral motoneurons, and have an inhibitory phenotype (Matise and Joyner, 1997; Ericsson et al., 1997;Saueressig et al., 1999;Sapir et al., 2004;Alvarez et a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.