Little is known about the regulation and function of the Notch1 gene in negative control of human tumors.Here we show that Notch1 gene expression and activity are substantially down-modulated in keratinocyte cancer cell lines and tumors, with expression of this gene being under p53 control in these cells. Genetic suppression of Notch signaling in primary human keratinocytes is sufficient, together with activated ras, to cause aggressive squamous cell carcinoma formation. Similar tumor-promoting effects are also caused by in vivo treatment of mice, grafted with keratinocytes expressing oncogenic ras alone, with a pharmacological inhibitor of endogenous Notch signaling. These effects are linked with a lesser commitment of keratinocytes to differentiation, an expansion of stem cell populations, and a mechanism involving up-regulation of ROCK1/2 and MRCK␣ kinases, two key effectors of small Rho GTPases previously implicated in neoplastic progression. Thus, the Notch1 gene is a p53 target with a role in human tumor suppression through negative regulation of Rho effectors.[Keywords: Notch; p53; ROCK/MRCK; stem cells; squamous cell carcinoma; in vivo siRNA delivery] Supplemental material is available at http://www.genesdev.org.
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA‐34a (miR‐34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR‐34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild‐type p53 expression. In normal HKCs, the pro‐differentiation effects of increased p53 activity or UVB exposure are miR‐34a‐dependent, and increased miR‐34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR‐34a function, is a direct target of this miRNA in HKCs, and SIRT6 down‐modulation is sufficient to reproduce the miR‐34a pro‐differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR‐34a in normal keratinocytes and keratinocyte‐derived tumours.
Background: Meropenem plasma concentration above a pathogen's MIC over the whole dosing interval (100% ƒT .MIC ) is a determinant of outcome in severe infections. Significant variability of meropenem pharmacokinetics is reported in ICU patients.Objectives: To characterize meropenem pharmacokinetics in variable CL CR or renal replacement therapy and assess the appropriateness of recommended regimens for MIC coverage.Methods: A pharmacokinetic analysis (NONMEM) was conducted with external model validation. Patient characteristics were tested on meropenem clearance estimates, differentiated according to the presence/absence of continuous renal replacement therapy (CRRT, CL CRRT or CL no-CRRT ). Simulations evaluated the appropriateness of recommended dosing for achieving 100% fT .MIC in 90% of patients.Results: A total of 101 patients were studied: median 63 years (range 49-70), 56% male, . 32% had a CL CR .60 mL/min, 49% underwent CRRT and 32% presented severe sepsis or septic shock. A total of 127 pathogens were documented: 76% Gram-negatives, 24% Gram-positives (meropenem MIC 90 2 mg/L, corresponding to EUCAST susceptibility breakpoint). Three hundred and eighty plasma and 129 filtrate-dialysate meropenem concentrations were analysed: two-compartment modelling best described the data. Predicted meropenem CL no-CRRT was 59% lower in impaired (CL CR 30 mL/min) compared to normal (CL CR 100 mL/min) renal function. Simulations showed that recommended regimens appropriately cover MIC 90 in patients with CL CR ,60 mL/min. Patients with CL CR of 60 to ,90 mL/min need 6 g/day to achieve appropriate coverage. In patients with CL CR !90 mL/min, appropriate exposure is achieved with increased dose, frequency of administration and infusion duration, or continuous infusion.Conclusions: Recommended meropenem regimens are suboptimal in ICU patients with normal or augmented renal clearance. Modified dosing or infusion modalities achieve appropriate MIC coverage for optimized antibacterial efficacy in meropenem-susceptible life-threatening infections.
Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.