Chromosomal microarray analysis has identified many novel microdeletions or microduplications that produce neurodevelopmental disorders with a recognizable clinical phenotype and that are not observed in normal individuals. However, imbalance of other genomic regions is associated with a variable phenotype with intellectual disability (ID) or autism in some individuals but are also observed in completely normal individuals. Several large studies have reported the prevalence of copy number (CN) variants in people with particular features (e.g., ID, autism, schizophrenia, or epilepsy); few studies have investigated the prevalence of genomic CN changes in the general population. We used a high-throughput method to screen 6813 consecutive cord blood samples from a predominantly French–Canadian population to assess genomic CN in five genomic regions: 1p36, 15q11-q13, 16p11.2, 16p11.2-p12.2, and 22q11.2. We identified one deletion and one duplication within 1p36, two deletions of 15q11-q13, eight deletions of 16p11.2-p12.2, two deletions and five duplications of 16p11.2, and six duplications of 22q11.2. This study provides estimates of the frequency of CN variants in an unselected population. Our findings have important implications for genetic counseling.
We compared clinical validity of two non-invasive prenatal screening (NIPS) methods for fetal trisomies 13, 18, 21, and monosomy X. We recruited prospectively 2203 women at high risk of fetal aneuploidy and 1807 at baseline risk. Three-hundred and twenty-nine euploid samples were randomly removed. The remaining 1933 high risk and 1660 baseline-risk plasma aliquots were assigned randomly between four laboratories and tested with two index NIPS tests, blind to maternal variables and pregnancy outcomes. The two index tests used massively parallel shotgun sequencing (semiconductor-based and optical-based). The reference standard for all fetuses was invasive cytogenetic analysis or clinical examination at birth and postnatal follow-up. For each chromosome of interest, chromosomal ratios were calculated (number of reads for chromosome/total number of reads). Euploid samples’ mean chromosomal ratio coefficients of variation were 0.48 (T21), 0.34 (T18), and 0.31 (T13). According to the reference standard, there were 155 cases of T21, 49 T18, 8 T13 and 22 45,X. Using a fetal fraction ≥4% to call results and a chromosomal ratio z-score of ≥3 to report a positive result, detection rates (DR), and false positive rates (FPR) were not statistically different between platforms: mean DR 99% (T21), 100%(T18, T13); 79%(45,X); FPR < 0.3% for T21, T18, T13, and <0.6% for 45,X. Both methods’ negative predictive values in high-risk pregnancies were >99.8%, except for 45,X(>99.6%). Threshold analysis in high-risk pregnancies with different fetal fractions and z-score cut-offs suggested that a z-score cutoff to 3.5 for positive results improved test accuracy. Both sequencing platforms showed equivalent and excellent clinical validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.