See Morris and Weil (doi: ) for a scientific commentary on this article. In a prospective multicentre study involving 1280 patients with idiopathic RBD, Postuma et al. show that approximately 6% of patients each year (>73.5% over 12 years) convert to full neurodegenerative disease. They test the predictive power of 21 prodromal markers of neurodegeneration, providing a template for planning neuroprotective trials.
Background Idiopathic REM sleep behavior disorder (RBD) is a parasomnia that is an important risk factor for PD and Lewy body dementia. Its prevalence is unknown. One barrier to determining prevalence is that current screening tools are too long for large-scale epidemiologic surveys. Therefore, we designed the REM Sleep Behavior Disorder Single-Question Screen (RBD1Q), a screening question for dream enactment with a simple yes/no response. Methods Four hundred and eighty-four sleep-clinic– based participants (242 idiopathic RBD patients and 242 controls) completed the screen during a multicenter case-control study. All participants underwent a polysomnogram to define gold-standard diagnosis according to standard criteria. Results We found a sensitivity of 93.8% and a specificity of 87.2%. Sensitivity and specificity were similar in healthy volunteers, compared to controls or patients, with other sleep diagnoses. Conclusions A single-question screen for RBD may reliably detect disease, with psychometric properties favorably comparable to those reported for longer questionnaires.
Although normal subjects do not move during REM sleep, patients with Parkinson's disease may experience REM sleep behaviour disorder (RBD). The characteristics of the abnormal REM sleep movements in RBD have, however, not been studied. We interviewed one hundred consecutive non-demented patients with Parkinson's disease and their bed partners using a structured questionnaire assessing the presence of RBD. They rated the quality of movements, voice and facial expression during RBD as being better, equal or worse than in awake ON levodopa condition. Night-time sleep and movements were video-monitored during polysomnography in 51 patients to evaluate the presence of bradykinesia, tremor and hypophonia during REM sleep. Fifty-nine patients had clinical RBD with 53/59 bed partners able to evaluate them. All 53 (100%) reported an improvement of at least one component of motor control during RBD. By history, movements were improved in 87% patients (faster, 87%; stronger, 87%; smoother, 51%), speech was better in 77% patients (more intelligible, 77%; louder, 38%; better articulated, 57%) and facial expression was normalized in 47% patients. Thirty-eight per cent of bed partners reported that movements were 'much better', even in the most disabled patients. The videomonitored purposeful movements in REM sleep were also surprisingly fast, ample, coordinated and symmetrical, without obvious sign of parkinsonism. The movements were, however, jerky, violent and often repetitive. While all patients had asymmetrical parkinsonism when awake, most of the time they used the more disabled arm, hand and leg during the RBD (P = 0.04). Movements involved six times as often the upper limbs and the face as the lower limbs (OR: 5.9, P = 0.004). The percentage of time containing tremor EMG activity decreased with sleep stages from 34.9 6 15.5% during wakefulness, to 3.6 6 5.7% during non-REM sleep stages 1-2, 1.4 6 3.0% during non-REM sleep stages 3-4, and 0.06 6 0.2% during REM sleep (in this last case, it was subclinical tremor). The restored motor control during REM sleep suggests a transient 'levodopa-like' reestablishment of the basal ganglia loop. Alternatively, parkinsonism may disappear by REM sleep-related disjunction between pyramidal and extrapyramidal systems. We suggest the following model: the movements during the RBD would be generated by the motor cortex and would follow the pyramidal tract bypassing the extrapyramidal system. These movements would eventually be transmitted to lower motor neurons because of brainstem lesions interrupting the pontomedullary pathways which mediate the REM sleep atonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.