We evaluated two types of compounds for efficacy in inhibiting SARSCoV replication in vitro: calpain inhibitors (a class of cellular cysteine proteinases) and a number of nucleoside analogues. Cytopathic effect reduction assays visually determined with spectrophotometric verification by neutral red (NR) uptake assay were used to evaluate cytotoxicity and antiviral potency of the compounds. Significantly inhibitory compounds were then evaluated in virus yield reduction assays. Two calpain inhibitors, Val-Leu-CHO (calpain inhibitor VI) and Z-Val-Phe-Ala-CHO (calpain inhibitor III), were the most potent inhibitors of SARSCoV. By virus yield reduction assay, calpain inhibitor VI had a 90% effective concentration (EC90) of 3 μM and calpain inhibitor III had an EC90 of 15 μM. β-D-N4-hydroxycytidine was the most selective nucleoside analogue inhibitor with an EC90 of 6 μM by virus yield reduction assay. These compounds or analogues warrant further evaluation as potential therapies for treating SARS or could be used as lead compounds for discovery of more potent SARSCoV inhibitors.
Picornaviruses (PV) include human rhinovirus (HRV), the primary cause of the common cold, and the enteroviruses (EV), which cause serious diseases such as poliomyelitis, meningoencephalitis, and systemic neonatal disease. Although no compounds for PV infections have been approved in the United States, pirodavir was one of the most promising capsid-binding compounds to show efficacy in human clinical trials for chemoprophylaxis of the common cold. Susceptibility to hydrolysis precluded its use as an oral agent. We have developed orally bioavailable pyridazinyl oxime ethers that are as potent as pirodavir. Compounds BTA39 and BTA188 inhibited a total of 56 HRV laboratory strains and three clinical isolates as determined by neutral red uptake assay. At concentrations of <100 nM, BTA39 inhibited 69% of the HRV serotypes and isolates evaluated, BTA188 inhibited 75%, and pirodavir inhibited 59% of the serotypes and isolates. The 50% inhibitory concentrations (IC 50 s) for the two compounds ranged from 0.5 nM to 6,701 nM. The compounds also inhibited EV, including coxsackie A and B viruses (IC 50 ؍ 773 to 3,608 nM) and echoviruses (IC 50 ؍ 193 to 5,155 nM). BTA39 only inhibited poliovirus strain WM-1 at 204 nM, and BTA188 only inhibited poliovirus strain Chat at 82 nM. EV 71 was inhibited by BTA39 and BTA188, with IC 50 s of 1 and 82 nM, respectively. Both compounds were relatively nontoxic in actively growing cells (50% cytotoxic doses, >4,588 nM). These data suggest that these oxime ethers warrant further investigation as potential agents for treating selected PV infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.