Mixing and evaporation processes play an important role in fluid injection and disintegration. Laser-induced thermal acoustics (LITA) also known as laser-induced grating spectroscopy (LIGS) is a promising four-wave mixing technique capable to acquire speed of sound and transport properties of fluids. Since the signal intensity scales with pressure, LITA is effective in high-pressure environments. By analysing the frequency of LITA signals using a direct Fourier analysis, speed of sound data can be directly determined using only geometrical parameters of the optical arrangement no equation of state or additional modelling is needed at this point. Furthermore, transport properties, like acoustic damping rate and thermal diffusivity, are acquired using an analytical expression for LITA signals with finite beam sizes. By combining both evaluations in one LITA signal, we can estimate mixing parameters, such as the mixture temperature and composition, using suitable models for speed of sound and the acquired transport properties. Finally, direct measurements of the acoustic damping rate can provide important insights on the physics of supercritical fluid behaviour.
Graphic Abstract
Mixing characteristics of supercritical injection studies were analyzed with regard to the necessity to include diffusive fluxes. Therefore, speed of sound data from mixing jets were investigated using an adiabatic mixing model and compared to an analytic solution. In this work, we show that the generalized application of the adiabatic mixing model may become inappropriate for subsonic submerged jets at high-pressure conditions. Two cases are discussed where thermal and concentration driven fluxes are seen to have significant influence. To which extent the adiabatic mixing model is valid depends on the relative importance of local diffusive fluxes, namely Fourier, Fick and Dufour diffusion. This is inter alia influenced by different time and length scales. The experimental data from a high-pressure n-hexane/nitrogen jet injection were investigated numerically. Finally, based on recent numerical findings, the plausibility of different thermodynamic mixing models for binary mixtures under high pressure conditions is analyzed.
With technical progress, combustion pressures have been increased over the years, frequently exceeding the critical pressure of the injected fluids. For conditions beyond the critical point of the injected fluids, the fundamental physics of mixing and evaporation processes is not yet fully understood. In particular, quantitative data for validation of numerical simulations and analytical models remain sparse. In previous works, transient speed of sound studies applying laser-induced thermal acoustics (LITA) have been conducted to investigate the mixing behaviour in the wake of an evaporating droplet injected into a supercritical atmosphere. LITA is a seedless, non-intrusive measurement technique capable of direct speed of sound measurements within these mixing processes. The used setup employs a high-repetition-rate excitation laser source and, therefore, allows the acquisition of time-resolved speed of sound data. For the visualisation of the evaporation process, measurements are accompanied by direct, high-speed shadowgraphy. In the present work, the measured speed of sound data are evaluated by applying an advection-controlled mixing assumption to estimate both the local mole fraction and mixing temperature. For this purpose, planar spontaneous Raman scattering results measured under the same operating conditions are evaluated using an advection-controlled mixing assumption with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state. Successively, the resulting concentration–temperature field is used for the estimation of local mixture parameters from the detected speed of sound data. Moreover, models using the PC-SAFT equation of state and the NIST database for the computation of the speed of sound are compared. The investigations indicate a classical two-phase evaporation process with evaporative cooling of the droplet. The subsequent mixing of fluid vapour and ambient gas also remains subcritical in the direct vicinity of the droplet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.