This article addresses the integration of cultural perspectives in the smart city discourse and in the implementation of the UN Agenda 2030; it does so specifically with respect to land patterns and land use. We hope to increase the ability of relevant stakeholders, including scientific communities working in that field, to handle the complexity of the current urban challenges. Culture is understood here in the broadest sense of the word, including the values and conceptualizations of the world, and the modes of technological creation and control of the environment. This concept of culture varies among stakeholders, depending, in particular, on their activities, on the place they live in, and also depending on their scientific background. We propose to complement existing targets that are explicitly related to culture in the UN and UNESCO agendas for 2030, and introduce a target of culture awareness for city information infrastructures. We show that, in the specific case of land patterns and land use, these new targets can be approached with historical data. Our analysis of the related core functionalities is based on interviews with practitioners, draws on insights from the humanities, and takes into account the readiness of the existing technologies.
Historical visual sources are particularly useful for reconstructing the successive states of the territory in the past and for analysing its evolution. However, finding visual sources covering a given area within a large mass of archives can be very difficult if they are poorly documented. In the case of aerial photographs, most of the time, this task is carried out by solely relying on the visual content of the images. Convolutional Neural Networks are capable to capture the visual cues of the images and match them to each other given a sufficient amount of training data. However, over time and across seasons, the natural and man-made landscapes may evolve, making historical image-based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval problem from a different novel point of view: by using geometrical and topological properties of geographic entities of the researched zone encoded as graph representations which are more robust to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial images are thought of as nodes in a graph, linked to each other by edges representing their spatial relationships. To build such graphs, we propose to use instances from topographic vector databases and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be successfully matched across time by means of the learned graph embedding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.