Background: Virtual Reality (VR) simulation has recently been developed and has improved surgical training. Most VR simulators focus on learning technical skills and few on procedural skills. Studies that evaluated VR simulators focused on feasibility, reliability or easiness of use, but few of them used a specific acceptability measurement tool. Objectives: The aim of the study was to assess acceptability and usability of a new VR simulator for procedural skill training among scrub nurses, based on the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Participants: The simulator training system was tested with a convenience sample of 16 nonexpert users and 13 expert scrub nurses from the neurosurgery department of a French University Hospital. Methods: The scenario was designed to train scrub nurses in the preparation of the instrumentation table for a craniotomy in the operating room (OR). Results: Acceptability of the VR simulator was demonstrated with no significant difference between expert scrub nurses and non-experts. There was no effect of age, gender or expertise. Workload, immersion and simulator sickness were also rated equally by all participants. Most participants stressed its pedagogical interest, fun and realism, but some of them also regretted its lack of visual comfort. Conclusion: This VR simulator designed to teach surgical procedures can be widely used as a tool in initial or vocational training.
This paper introduces FlowVR, a middleware dedicated to virtual reality applications distributed on clusters or grid environments. FlowVR supports coupling of heterogeneous parallel codes and is component oriented to favor code reuse. While classical communication paradigms focus on either a synchronous approach (FIFO channels) or an asynchronous one (sampling), FlowVR enables a large range of intermediate policies to better balance the application performance between levels of details, latencies and refresh rates.
The feeling of presence is essential for efficient interaction within Virtual Environments (VEs). When a user is fully immersed within a VE through a large immersive display system, his/her feeling of presence can be altered because of disturbing interactions with his/her physical environment, such as collision with hardware parts of the system or loss of tracking. This alteration can be avoided by taking into account the physical features of the user as well as those of the system hardware and embedding them in the VE. Moreover, the 3D abstract representation of these physical features can also be useful for collaboration between distant users because they can make a user aware of the physical limitations of the others he/she is collaborating with. In this paper we present how we use the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.