Epigenetic models for tumor formation assume that oncogenic transformation results from changes in the activity of otherwise normal genes. Since gene activity can be inhibited by DNA methylation, and inactivation of tumor suppressor genes is a fundamental process in oncogenesis, we investigated the methylation status of the retinoblastoma suppressor gene (RB gene) on chromosome 13, in blood and tumor cells from 21 retinoblastoma patients. Using methylation-sensitive restriction enzymes and a cloned DNA probe for the unmethylated CpG island at the 5' end of RB gene, we obtained evidence of hypermethylation of this gene in a sporadic unilateral retinoblastoma tumor. The closely linked esterase D gene and a CpG-rich island on chromosome 15 were not affected. We suggest that changes in the methylation pattern of the RB gene play a role in the development and spontaneous regression of some retinoblastoma tumors.
The retinoblastoma susceptibility (RB1) gene contains an unmethylated CpG-rich island at its 5' end. Using methylation-sensitive restriction enzymes, we have investigated the methylation status of this island in 21 sporadic unilateral retinoblastomas and 30 hereditary retinoblastomas. Three sporadic unilateral tumors were found to have hypermethylated RB1 alleles. In two tumors, the paternal allele was methylated, whereas the maternal allele had been lost. Cultured cells from one of these tumors were studied by the reverse transcription polymerase chain reaction and found to have a reduced level of RB1 mRNA. The third tumor had retained constitutional heterozygosity, and the paternal allele was specifically methylated. The combined data from previously published reports and from this study show that hypermethylation of the RB1 gene occurs in 13% of sporadic unilateral tumors and may reduce gene activity.
BackgroundCompared with conventional genotyping, which typically tests for a limited number of mutations, next‐generation DNA sequencing (NGS) provides increased accuracy for carrier screening. The objective of this study was to evaluate the cost effectiveness of carrier screening using NGS versus genotyping for 14 of the recessive disorders for which medical society guidelines recommend screening.MethodsData from published literature, population surveys, and expert opinion were used to develop a decision tree model capturing decisions and outcomes related to carrier screening and reproductive health.ResultsModeling a population of 1,000,000 couples that was representative of the United States population and that contained 83,421 carriers of pathogenic mutations, carrier screening using NGS averted 21 additional affected births as compared with genotyping, and reduced costs by approximately $13 million. As compared with no screening, NGS carrier screening averted 223 additional affected births. The results are sensitive to assumptions regarding mutation detection rates and carrier frequencies in multiethnic populations.ConclusionThis study demonstrated that NGS‐based carrier screening offers the greater benefit in clinical outcomes and lower total healthcare cost as compared with genotyping.
Purpose:Carrier screening for recessive Mendelian disorders traditionally employs focused genotyping to interrogate limited sets of mutations most prevalent in specific ethnic groups. We sought to develop a next-generation DNA sequencing–based workflow to enable analysis of a more comprehensive set of disease-causing mutations.Methods:We utilized molecular inversion probes to capture the protein-coding regions of 15 genes from genomic DNA isolated from whole blood and sequenced those regions using the Illumina HiSeq 2000 (Illumina, San Diego, CA). To assess the quality of the resulting data, we measured both the fraction of the targeted region yielding high-quality genotype calls, and the sensitivity and specificity of those calls by comparison with conventional Sanger sequencing across hundreds of samples. Finally, to improve the overall accuracy for detecting insertions and deletions, we introduce a novel assembly-based approach that substantially increases sensitivity without reducing specificity.Results:We generated high-quality sequence for at least 99.8% of targeted base pairs in samples derived from blood and achieved high concordance with Sanger sequencing (sensitivity >99.9%, specificity >99.999%). Our novel algorithm is capable of detecting insertions and deletions inaccessible by current methods.Conclusion:Our next-generation DNA sequencing–based approach yields the accuracy and completeness necessary for a carrier screening test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.