Synaptic terminals are known to expand and contract throughout an animal's life. The physiological constraints and demands that regulate appropriate synaptic growth and connectivity are currently poorly understood. In previous work, we identified a Drosophila model of lysosomal storage disease (LSD), spinster (spin), with larval neuromuscular synapse overgrowth. Here we identify a reactive oxygen species (ROS) burden in spin that may be attributable to previously identified lipofuscin deposition and lysosomal dysfunction, a cellular hallmark of LSD. Reducing ROS in spin mutants rescues synaptic overgrowth and electrophysiological deficits. Synapse overgrowth was also observed in mutants defective for protection from ROS and animals subjected to excessive ROS. ROS are known to stimulate JNK and fos signaling. Furthermore, JNK and fos in turn are known potent activators of synapse growth and function. Inhibiting JNK and fos activity in spin rescues synapse overgrowth and electrophysiological deficits. Similarly, inhibiting JNK, fos, and jun activity in animals with excessive oxidative stress rescues the overgrowth phenotype. These data suggest that ROS, via activation of the JNK signaling pathway, are a major regulator of synapse overgrowth. In LSD, increased autophagy contributes to lysosomal storage and, presumably, elevated levels of oxidative stress. In support of this suggestion, we report here that impaired autophagy function reverses synaptic overgrowth in spin. Our data describe a previously unexplored link between oxidative stress and synapse overgrowth via the JNK signaling pathway.
Oxidative stress, caused by increased levels of reactive oxidative species (ROS), is considered a major contributor to the aging process. How oxidative stress may bring about changes to structures and function in the aging brain is poorly understood. Oxidative stress activates a number of cellular responses, including activation of the Jun-N-terminal kinase (JNK) pathway and autophagy. In addition to their pathological role, ROS also act as signaling molecules. ROS such as nitric oxide have a well-known role in learning and memory. In addition, activation of JNK and its transcriptional effector AP-1 are well-known mediators of synaptic function and growth. Both are essential mediators of physiological correlates of learning and memory such as long-term potentiation. JNK and AP-1 are potently activated and regulated by oxidative stress and mediate protective cellular responses such as autophagy. Recent work at the Drosophila neuromuscular junction implicates autophagy as a regulator of synaptic growth via activation of the JNK signaling pathway. We here outline a framework predicating oxidative stress as a major regulator of synaptic function and growth by the activation of JNK/AP-1 and autophagy. Such responses, we suggest, may underpin some forms of synaptic growth responses and synaptic aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.